Advertisement

Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 573–582 | Cite as

Effects of alpha-ketoglutarate (AKG) on growth performance and non-specific immunity of juvenile red drum fed diets with low or adequate phosphorus levels

Article

Abstract

This study evaluated the effects of α-ketoglutarate (AKG) on the growth performance, body, and skeletal composition, as well as non-specific immunity of juvenile red drum (Sciaenops ocellatus) fed adequate or low-phosphorus diets. A 2 × 2 factorial design was arranged with two levels of total phosphorus (1.0 or 1.6%) and two levels (0 or 1%) of AKG. Each diet was fed to red drum in four replicate 110-L aquaria (15 fish/aquarium) twice daily for 7 weeks. The results indicated that the low-P diets significantly (P < 0.05) decreased weight gain, feed efficiency, and condition factor of red drum, but increased moisture content and decreased ash content of whole body, as well as decreased ash content of skeletal tissue and decreased plasma lysozyme. Supplementation of AKG significantly improved the fillet yield and plasma lysozyme and tended to improve neutrophil oxidative radical production (P = 0.097). Based on these results, phosphorus level had the greatest effect on growth performance and non-specific immunity of red drum, while AKG supplementation had limited positive effects on immunological responses and fillet yield of juvenile red drum.

Keywords

Phosphorus Alpha-ketoglutarate Red drum Growth performance Skeleton composition Non-specific immunity 

Notes

Acknowledgments

Special thanks to Mr. Brian Ray, facility manager of the Texas A&M University Aquacultural Research and Teaching Facility as well as visiting professors, and graduate students for their assistance. We are also grateful to Texas A&M AgriLife Research, and the Department of Wildlife and Fisheries Sciences for supporting this research.

References

  1. AOAC (2005) Official methods of analysis. AOAC (Association of Official Analytical Chemists), GaithersburgGoogle Scholar
  2. Borlongan IG, Satoh S (2001) Dietary phosphorus requirement of juvenile milkfish, Chanos chanos (Forsskal). Aquac Res 32:26–32.  https://doi.org/10.1046/j.1355-557x.2001.00003.x CrossRefGoogle Scholar
  3. Brown ML, Jaramillo F Jr, Gatlin DM III (1993) Dietary phosphorus requirement of juvenile sunshine bass, Morone chrysops × M. Saxatilis. Aquaculture 113:355–363Google Scholar
  4. Chen K, Jiang W, Wu P, Liu Y, Kuang S, Tang L, Tang W, Zhang Y, Zhou X, Feng L (2017) Effect of dietary phosphorus deficiency on the growth, immune function and structural integrity of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology 63:103–126.  https://doi.org/10.1016/j.fsi.2017.02.007 CrossRefGoogle Scholar
  5. Cheng ZY, Buentello JA, Gatlin DM III (2011) Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture 319(1-2):247–252.  https://doi.org/10.1016/j.aquaculture.2011.06.025 CrossRefGoogle Scholar
  6. Cheng ZY, Gatlin DM III, Buentello A (2012) Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops × Morone saxatilis). Aquaculture 362-363:39–43.  https://doi.org/10.1016/j.aquaculture.2012.07.015 CrossRefGoogle Scholar
  7. Davis DA, Robinson EH (1987) Dietary phosphorus requirement of juvenile red drum Sciaenops ocellatus. J World Aquacult Soc 18(3):129–136.  https://doi.org/10.1111/j.1749-7345.1987.tb00431.x CrossRefGoogle Scholar
  8. Eya JC, Lovell RT (1998) Effects of dietary phosphorus on resistance of channel catfish to Edwardsiella ictaluri challenge. J Aquat Anim Health 10(1):28–34.  https://doi.org/10.1577/1548-8667(1998)010<0028:EODPOR>2.0.CO;2 CrossRefGoogle Scholar
  9. Falahatkar B, Poursaeid S, Meknatkhah B, Khara H, Efatpanah I (2014) Long-term effects of intraperitoneal injection of estradiol-17β on the growth and physiology of juvenile stellate sturgeon Acipenser stellatus. Fish Physiol Biochem 40(2):365–373.  https://doi.org/10.1007/s10695-013-9849-8 CrossRefPubMedGoogle Scholar
  10. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 97:383–394Google Scholar
  11. Harrison AP, Tygesen MP, Sawa-Wojtanowicz B, Husted S, Tatara M (2004) α-ketoglutarate treatment early in postnatal life improves bone density in lambs at slaughter. Bone 35(1):204–209.  https://doi.org/10.1016/j.bone.2004.03.016 CrossRefPubMedGoogle Scholar
  12. Jeevanandam M, Ali MR, Ramias L, Schiller WR (1991) Efficacy of ornithine-alpha-ketoglutarate (OKGA) as a dietary-supplement in growing rats. Clin Nutr 10(3):155–161.  https://doi.org/10.1016/0261-5614(91)90051-D CrossRefPubMedGoogle Scholar
  13. Jokinen EI, Vielma J, Aaltonen TM, Koskela J (2003) The effect of dietary phosphorus deficiency on the immune responses of European whitefish (Coregonus lavaretus L.) Fish & Shellfish Immunology 15(2):159–168.  https://doi.org/10.1016/S1050-4648(02)00155-9 CrossRefGoogle Scholar
  14. Jørgensen JB, Sharp JE, Secombes CJ, Robertsen B (1993) Effect of a yeast-cell-wall glucan on the bactericidal activity of rainbow trout macrophages. Fish Shellfish Immunol 3(4):267–277.  https://doi.org/10.1006/fsim.1993.1026 CrossRefGoogle Scholar
  15. Kaushik SJ (2001) Mineral nutrition. In: Guillaume J, Kaushik SJ, Bergot P, Metailler R (eds) Nutrition and feeding of fish and crustaceans. Praxis Publishing, Chichester, pp 169–181Google Scholar
  16. Kowalik S, Sliwa E, Tatara MR, Krupski W, Majcher P, Studziski T (2005) Influence of alpha-ketoglutarate on mineral density and geometrical and mechanical parameters of femora during postnatal life in piglets. Bull Vet Inst Pulawy 49:107–111Google Scholar
  17. Krishna S, AsimKumar P, Narottam PS, Dipesh DW, Biswamitra P (2009) Phosphorus requirement of Catla (Catla catla Hamilton) fingerlings based on growth, whole-body phosphorus concentration and non-faecal phosphorus excretion. Aquac Res 40:139–147CrossRefGoogle Scholar
  18. Kristensen NB, Jungvid H, Fernández JA, Pierzynowski SG (2002) Absorption and metabolism of α-ketoglutarate in growing pigs. J Anim Physiol Anim Nutr 86(7-8):239–245.  https://doi.org/10.1046/j.1439-0396.2002.00380.x CrossRefGoogle Scholar
  19. Lall SP (2002) The minerals. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, London, pp 259–308Google Scholar
  20. Li P, Gatlin DM III (2003) Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops × M. Saxatilis). Aquaculture 219:681-682Google Scholar
  21. Lin Y, Zhou XQ (2006) Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var Jian). Aquaculture 256:389–394CrossRefGoogle Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  23. Luo Z, Tan XY, Liu X, Wang WM (2010) Dietary total phosphorus requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquac Int 18(5):897–908.  https://doi.org/10.1007/s10499-009-9310-2 CrossRefGoogle Scholar
  24. Magnadottir B (2006) Innate immunity of fish (overview). Fish & Shellfish Immunology 20(2):137–151.  https://doi.org/10.1016/j.fsi.2004.09.006 CrossRefGoogle Scholar
  25. Magnadottir B, Jonsdottir H, Helgason S, Bjornsson B, Jorgensen TO, Pilstrom L (1999) Humoral immune parameters in Atlantic cod (Gadus morhua L.). II. The effects of size and gender under different environmental conditions. Comparative biochemistry and physiology. Part B, Biochemistry & Molecular Biology 122(2):181–188.  https://doi.org/10.1016/S0305-0491(98)10157-8 CrossRefGoogle Scholar
  26. Mai K, Zhang C, Ai Q, Duan Q, Xu W, Zhang L, Liufu Z, Tan B (2016) Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 251:346–353CrossRefGoogle Scholar
  27. Moon HY, Gatlin DM III (1991) Total sulfur amino acid requirement of juvenile red drum, Sciaenops Ocellatus. Aquaculture 95(1-2):97–106.  https://doi.org/10.1016/0044-8486(91)90076-J CrossRefGoogle Scholar
  28. Moukarzel AA, Goulet O, Salas JS, Martihenneberg C, Buchman AL, Cynober L, Rappaport R, Ricour C (1994) Growth-retardation in children receiving long-term total parenteral-nutrition-effects of ornithine alpha-ketoglutarate. Am J Clin Nutr 60(3):408–413CrossRefPubMedGoogle Scholar
  29. Nwanna LC, Kühlwein H, Schwarz FJ (2010) Phosphorus requirement of common carp (Cyprinus carpio L) based on growth and mineralization. Aquac Res 41(3):401–410.  https://doi.org/10.1111/j.1365-2109.2009.02221.x CrossRefGoogle Scholar
  30. Oliva-Teles A, Pimentel-Rodrigues A (2004) Phosphorus requirement of European sea bass (Dicentrarchus labrax L.) juveniles. Aquac Res 35(7):636–642.  https://doi.org/10.1111/j.1365-2109.2004.01059.x CrossRefGoogle Scholar
  31. Phillips AM, Podoliak HA, Brockway DR, Vaughn RR (1958) The Nutrition of Trout. Cortland Hatch. Report, No. 26, Fish. Res. Bull., 21, 93. NewYork Conservation Department, AlbanyGoogle Scholar
  32. Roy PK, Lall SP (2003) Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.) Aquaculture 221:451–468Google Scholar
  33. Schaefer A, Koppe WM, Meyer-Burgdorff KH, Gunther KD (1995) Effects of P-supply on growth and mineralization in mirror carp (Cyprinus carpio L.) J Appl Ichthyol 11(3-4):397–400.  https://doi.org/10.1111/j.1439-0426.1995.tb00050.x CrossRefGoogle Scholar
  34. Siwicki AK, Anderson DP (1994) Immunoglobulin levels in fish sera measured by polyethylene glycol and spectrophotometric methods in microtiter plates. In: Stolen JS, Fletcher TC, Anderson DP, Kaattari SL, Rowley AF (eds) Techniques in fish immunology III. SOS Publications, Fair HavenGoogle Scholar
  35. Siwicki AK, Anderson DP, Rumsey GL (1994) Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol 41(1-2):125–139.  https://doi.org/10.1016/0165-2427(94)90062-0 CrossRefPubMedGoogle Scholar
  36. Śliwa E, Tatara MR, Pierzynowski SG (2006) Total cholesterol, glucose, and electrolytes in piglets serum after alpha-ketoglutarate (AKG) and dexamethasone treatment during prenatal and neonatal life. Bull Vet Inst Pulawy 50:561–566Google Scholar
  37. Tatara MR, Pierzynowski SG, Majcher P, Krupski W, Brodzki A, Studzinski T (2004) Effect of alpha-ketoglutarate (AKG) on mineralisation, morphology and mechanical endurance of femur and tibia in turkey. Bull Vet Inst Pulawy 48:305–309Google Scholar
  38. Wang L, Wei Y, Wang C, Li J, Zhao Z, Luo L, Du X, Qiyou X (2016a) Effects of α-ketoglutarate on the growth performance, amino acid metabolism and related gene expression of mirror carp (Cyprinus carpio). Aquac Nutr 23(5):926–933.  https://doi.org/10.1111/anu.12460 CrossRefGoogle Scholar
  39. Wang L, Xu Q, Wang C, Li J, Chen D, Zhao Z, Luo L, Du X (2016b) Effects of dietary α-ketoglutarate supplementationon the growth performance, glutamine synthesisand amino acid concentrations of juvenile hybrid sturgeon Acipenser schrenckii ♀ × Acipenser baerii ♂ fed high levels of soy protein concentrate. Anim Feed Sci Technol 211:199–207.  https://doi.org/10.1016/j.anifeedsci.2015.11.016 CrossRefGoogle Scholar
  40. Wang L, Xu Q, Wang C, Li J, Chen D, Zhao Z, Luo L, Du X (2017) Effects of dietary a-ketoglutarate supplementation on the antioxidant defense system and HSP 70 and HSP 90 gene expression of hybrid sturgeon Acipenser schrenckiiA. baerii ♂ exposed to ammonia-N stress. Aquac Res 48(5):2266–2277.  https://doi.org/10.1111/are.13063 CrossRefGoogle Scholar
  41. Webb KA, Gatlin DM III (2003) Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum Sciaenops ocellatus. Aquaculture 225(1-4):17–26.  https://doi.org/10.1016/S0044-8486(03)00274-6 CrossRefGoogle Scholar
  42. Wiren M, Permert J, Larsson J (2002) Alpha-ketoglutarate-supplemented enteral nutrition: effects on postoperative nitrogen balance and muscle catabolism. Nutrition 18(9):725–728.  https://doi.org/10.1016/S0899-9007(02)00844-4 CrossRefPubMedGoogle Scholar
  43. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128(8):1249–1252CrossRefPubMedGoogle Scholar
  44. Xu Q, Zhu Q, Xu H, Wang C, Sun D (2011) Dietary glutamine supplementation improves growth performance and intestinal digestion absorption ability in young hybrid sturgeon. J Appl Ichthyol 27:721–726CrossRefGoogle Scholar
  45. Yao YF, Jiang M, Wen H, Wu F, Liu W, Tian J, Yang CG (2014) Dietary phosphorus requirement of GIFT strain of Nile tilapia Oreochromis niloticus reared in freshwater. Aquac Nutr 20(3):273–280.  https://doi.org/10.1111/anu.12075 CrossRefGoogle Scholar
  46. Ye CX, Wan F, Sun ZZ, Cheng CH, Ling RZ, Fan LF, Wang AL (2016) Effect of phosphorus supplementation on cell viability, anti-oxidative capacity and comparative proteomic profiles of puffer fish (Takifugu obscurus) under low temperature stress. Aquaculture 452:200–208.  https://doi.org/10.1016/j.aquaculture.2015.10.039 CrossRefGoogle Scholar
  47. Zhang C, Mai K, Ai Q, Zhang W, Duan Q, Tan B, Ma H, Xu W, Liufu Z, Wang X (2006) Dietary phosphorus requirement of juvenile Japanese seabass, Lateolabrax japonicas. Aquaculture 255(1-4):201–209.  https://doi.org/10.1016/j.aquaculture.2005.11.040 CrossRefGoogle Scholar
  48. Zhu Q, Xu QY, Xu H, Wang CA, Sun DJ (2011) Dietary glutamine supplementation improves tissue antioxidant status and serum non-specific immunity of juvenile hybrid sturgeon (Acipenser schrenckii × Huso dauricus). J Appl Ichthyol 27(2):715–720.  https://doi.org/10.1111/j.1439-0426.2011.01676.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Heilongjiang River Fisheries Research InstituteChinese Academy of Fishery SciencesHarbinChina
  2. 2.Department of Wildlife and Fisheries Sciences and Intercollegiate Faculty of NutritionTexas A&M UniversityCollege StationUSA

Personalised recommendations