Fish Physiology and Biochemistry

, Volume 42, Issue 1, pp 389–401 | Cite as

Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid β-oxidation be regulated by estrogen signaling?

  • Tânia Vieira MadureiraEmail author
  • L. Filipe C. Castro
  • Eduardo Rocha


Acyl-coenzyme A oxidases 1 (Acox1) and 3 (Acox3) are key enzymes in the regulation of lipid homeostasis. Endogenous and exogenous factors can disrupt their normal expression/activity. This study presents for the first time the isolation and characterization of Acox1 and Acox3 in brown trout (Salmo trutta f. fario). Additionally, as previous data point to the existence of a cross-talk between two nuclear receptors, namely peroxisome proliferator-activated receptors and estrogen receptors, it was here evaluated after in vitro exposures of trout hepatocytes the interference caused by ethynylestradiol in the mRNA levels of an inducible (by peroxisome proliferators) and a non-inducible oxidase. The isolated Acox1 and Acox3 show high levels of sequence conservation compared to those of other teleosts. Additionally, it was found that Acox1 has two alternative splicing isoforms, corresponding to 3I and 3II isoforms of exon 3 splicing variants. Both isoforms display tissue specificity, with Acox1–3II presenting a more ubiquitous expression in comparison with Acox1–3I. Acox3 was expressed in almost all brown trout tissues. According to real-time PCR data, the highest estrogenic stimulus was able to cause a down-regulation of Acox1 and an up-regulation of Acox3. So, for Acox1 we found a negative association between an estrogenic input and a directly activated PPARα target gene. In conclusion, changes in hormonal estrogenic stimulus may impact the mobilization of hepatic lipids to the gonads, with ultimate consequences in reproduction. Further studies using in vivo assays will be fundamental to clarify these issues.


Acox1 Acox3 PPARs Estrogens Brown trout 



Study supported by the ERDF—European Regional Development Fund, through the COMPETE—Operational Competitiveness Programme, and by National Public Funds through FCT—Foundation for Science and Technology, primarily under Project “PTDC/CVT/115618/2009,” post-doc Grant [SFRH/BPD/97139/2013 to T.V.M.] and additionally by Project “UID/Multi/04423/2013.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10695_2015_146_MOESM1_ESM.docx (17 kb)
Table 3 Identity and similarity analysis for Acox1 and Acox3 protein sequences (DOCX 18 kb)


  1. Batista-Pinto C, Rocha E, Castro LFC, Rodrigues P, Lobo-da-Cunha A (2009) Seasonal and gender variation of peroxisome proliferator activated receptors expression in brown trout liver. Gen Comp Endocrinol 161:146–152. doi: 10.1016/j.ygcen.2008.11.019 CrossRefPubMedGoogle Scholar
  2. Casteels M, Schepers L, Van Veldhoven PP, Eyssen HJ, Mannaerts GP (1990) Separate peroxisomal oxidases for fatty acyl-CoAs and trihydroxycoprostanoyl-CoA in human liver. J Lipid Res 31:1865–1872PubMedGoogle Scholar
  3. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890. doi: 10.1093/nar/16.22.10881 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Du Z, Demizieux L, Degrace P, Gresti J, Moindrot B, Liu Y, Tian L, Cao J, Clouet P (2004) Alteration of 20:5n-3 and 22:6n-3 fat contents and liver peroxisomal activities in fenofibrate-treated rainbow trout. Lipids 39:849–855. doi: 10.1007/s11745-004-1306-3 CrossRefPubMedGoogle Scholar
  5. Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N, Reddy JK (1996) Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271:24698–24710. doi: 10.1074/jbc.271.40.24698 CrossRefPubMedGoogle Scholar
  6. Fan C, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor α natural ligand metabolism. J Biol Chem 273:15639–15645. doi: 10.1074/jbc.273.25.15639 CrossRefPubMedGoogle Scholar
  7. Flouriot G, Pakdel F, Valotaire Y (1996) Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol Cell Endocrinol 124:173–183. doi: 10.1016/S0303-7207(96)03960-3 CrossRefPubMedGoogle Scholar
  8. Fournier B, Saudubray JM, Benichou B, Lyonnet S, Munnich A, Clevers H, Poll-The BT (1994) Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J Clin Investig 94:526–531PubMedCentralCrossRefPubMedGoogle Scholar
  9. Gräns J, Wassmur B, Celander MC (2010) One-way inhibiting cross-talk between arylhydrocarbon receptor (AhR) and estrogen receptor (ER) signaling in primary cultures of rainbow trout hepatocytes. Aquat Toxicol 100:263–270. doi: 10.1016/j.aquatox.2010.07.024 CrossRefPubMedGoogle Scholar
  10. He A-Y, Liu C-Z, Chen L-Q, Ning L-J, Zhang M-L, Li E-C, Du Z-Y (2014) Identification, characterization and nutritional regulation of two isoforms of acyl-coenzyme A oxidase 1 gene in Nile tilapia (Oreochromis niloticus). Gene 545:30–35. doi: 10.1016/j.gene.2014.05.010 CrossRefPubMedGoogle Scholar
  11. Ibabe A, Herrero A, Cajaraville MP (2005) Modulation of peroxisome proliferator-activated receptors (PPARs) by PPARα- and PPARγ-specific ligands and by 17β-estradiol in isolated zebrafish hepatocytes. Toxicol In Vitro 19:725–735. doi: 10.1016/j.tiv.2005.03.019 CrossRefPubMedGoogle Scholar
  12. Jeong S, Yoon M (2007) Inhibition of the actions of peroxisome proliferator-activated receptor α on obesity by estrogen. Obesity 15:1430–1440. doi: 10.1038/oby.2007.171 CrossRefPubMedGoogle Scholar
  13. Jiao Y, Zan LS, Liu YF, Wang HB (2011) Molecular characterization, polymorphism of the ACOX1 gene and association with ultrasound traits in Bos taurus. Genet Mol Res 10:1948–1957CrossRefPubMedGoogle Scholar
  14. Kane CD, Francone OL, Stevens KA (2006) Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARα. Gene 380:84–94. doi: 10.1016/j.gene.2006.05.011 CrossRefPubMedGoogle Scholar
  15. Keller H, Givel F, Perroud M, Wahli W (1995) Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements. Mol Endocrinol 9:794–804. doi: 10.1210/me.9.7.794 PubMedGoogle Scholar
  16. Kim BH, Won YS, Kim DY, Kim B, Kim EY, Yoon M, Oh GT (2009) Signal crosstalk between estrogen and peroxisome proliferator-activated receptor α on adiposity. BMB Rep 42:91–95CrossRefPubMedGoogle Scholar
  17. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. doi: 10.1093/bioinformatics/btm091 CrossRefPubMedGoogle Scholar
  18. Körner O, Kohno S, Schönenberger R, Suter MJF, Knauer K, Guillette LJ Jr, Burkhardt-Holm P (2008) Water temperature and concomitant waterborne ethinylestradiol exposure affects the vitellogenin expression in juvenile brown trout (Salmo trutta). Aquat Toxicol 90:188–196. doi: 10.1016/j.aquatox.2008.08.012 CrossRefPubMedGoogle Scholar
  19. Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G (2001) Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR)α: PPARα fails to induce peroxisome proliferation-associated genes in human cells independently of the levels of receptor expression. J Biol Chem 276:31521–31527. doi: 10.1074/jbc.M103306200 CrossRefPubMedGoogle Scholar
  20. Maglich JM, Caravella JA, Lambert MH, Willson TM, Moore JT, Ramamurthy L (2003) The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily. Nucleic Acids Res 31:4051–4058. doi: 10.1093/nar/gkg444 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Mandard S, Müller M, Kersten S (2004) Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 61:393–416. doi: 10.1007/s00018-003-3216-3 CrossRefPubMedGoogle Scholar
  22. Morais S, Knoll-Gellida A, André M, Barthe C, Babin PJ (2007) Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Physiol Genom 28:239–252. doi: 10.1152/physiolgenomics.00136.2006 CrossRefGoogle Scholar
  23. Ngo SNT, McKinnon RA, Stupans I (2003) Identification and cloning of two forms of liver peroxisomal fatty Acyl CoA Oxidase from the koala (Phascolarctos cinereus). Gene 309:91–99. doi: 10.1016/S0378-1119(03)00491-8 CrossRefPubMedGoogle Scholar
  24. Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, van Veldhoven PP, Reddy JK, Cherkaoui-Malki M (2007) Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem Biophys Res Commun 360:314–319. doi: 10.1016/j.bbrc.2007.06.059 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Ortiz-Zarragoitia M, Cajaraville MP (2005) Effects of selected xenoestrogens on liver peroxisomes, vitellogenin levels and spermatogenic cell proliferation in male zebrafish. Comp Biochem Physiol Part C Toxicol Pharmacol 141:133–144. doi: 10.1016/j.cca.2005.05.010 CrossRefGoogle Scholar
  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal β-oxidation—a metabolic pathway with multiple functions. Biochim Biophys Acta Mol Cell Res 1763:1413–1426. doi: 10.1016/j.bbamcr.2006.08.034 CrossRefGoogle Scholar
  28. Qi C, Zhu Y, Reddy J (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32:187–204. doi: 10.1385/CBB:32:1-3:187 CrossRefPubMedGoogle Scholar
  29. Rakhshandehroo M, Knoch B, Müller M, Kersten S (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010:1–20. doi: 10.1155/2010/612089 CrossRefGoogle Scholar
  30. Reddy JK, Hashimoto T (2001) Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21:193–230. doi: 10.1146/annurev.nutr.21.1.193 CrossRefPubMedGoogle Scholar
  31. Rocha E, Lobo-da-Cunha A, Monteiro RAF, Silva MW, Oliveira MH (1999) A stereological study along the year on the hepatocytic peroxisomes of brown trout (Salmo trutta). J Submicrosc Cytol Pathol 31:91–105Google Scholar
  32. Ruyter B, Andersen Ø, Dehli A, Farrants AÖ, Gjøen T, Thomassen MS (1997) Peroxisome proliferator activated receptors in Atlantic salmon (Salmo salar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochim Biophys Acta Lipids Lipid Met 1348:331–338. doi: 10.1016/S0005-2760(97)00080-5 CrossRefGoogle Scholar
  33. Scarano LJ, Calabrese EJ, Kostecki PT, Baldwin LA, Leonard DA (1994) Evaluation of a rodent peroxisome proliferator in two species of freshwater fish: rainbow trout (Onchorynchus mykiss) and japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 29:13–19CrossRefPubMedGoogle Scholar
  34. Schepers L, Van Veldhoven PP, Casteels M, Eyssen HJ, Mannaerts GP (1990) Presence of three acyl-CoA oxidases in rat liver peroxisomes. An inducible fatty acyl-CoA oxidase, a noninducible fatty acyl-CoA oxidase, and a noninducible trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 265:5242–5246PubMedGoogle Scholar
  35. Seglen PO (1994) Isolation of hepatocytes. In: Celis JE (ed) Cell biology: a laboratory handbook. Academic Press Inc, New York, pp 96–102Google Scholar
  36. Setoyama C, Tamaoki H, Nishina Y, Shiga KO, Miura R (1995) Functional expression of 2 forms of rat acyl-CoA oxidase and their substrate specificities. Biochem Biophys Res Commun 217:482–487. doi: 10.1006/bbrc.1995.2801 CrossRefPubMedGoogle Scholar
  37. Sugiyama M, Takenaga F, Kitani Y, Yamamoto G, Okamoto H, Masaoka T, Araki K, Nagoya H, Mori T (2012) Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol Open 1:1035–1042. doi: 10.1242/bio.20121263 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Tamaoki H, Setoyama C, Miura R, Hazekawa I, Nishina Y, Shiga K (1997) Spectroscopic studies of rat liver acyl-CoA oxidase with reference to recognition and activation of substrate. J Biochem 121:1139–1146CrossRefPubMedGoogle Scholar
  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  41. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11:433–439PubMedCentralPubMedGoogle Scholar
  42. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. doi: 10.1093/nar/gks596 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065–20074PubMedGoogle Scholar
  44. Van Veldhoven PP, Van Rompuy P, Fransen M, De Béthune B, Mannaerts GP (1994) Large-scale purification and further characterization of rat pristanoyl-CoA oxidase. Eur J Biochem 222:795–801. doi: 10.1111/j.1432-1033.1994.tb18926.x CrossRefPubMedGoogle Scholar
  45. Vanhooren JCT, Fransen M, De Béthune B, Baumgart E, Baes M, Torrekens S, Van Leuven F, Mannaerts GP, Van Veldhoven PP (1996) Rat pristanoyl-CoA oxidase. cDNA cloning and recognition of its C-terminal (SQL) by the peroxisomal-targeting signal 1 receptor. Eur J Biochem 239:302–309. doi: 10.1111/j.1432-1033.1996.0302u.x CrossRefPubMedGoogle Scholar
  46. Vanhooren JC, Marynen P, Mannaerts GP, Van Veldhoven PP (1997) Evidence for the existence of a pristanoyl-CoA oxidase gene in man. Biochem J 325:593–599PubMedCentralCrossRefPubMedGoogle Scholar
  47. Varanasi U, Chu R, Chu S, Espinosa R, LeBeau MM, Reddy JK (1994) Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis, and chromosomal localization. PNAS 91:3107–3111. doi: 10.1073/pnas.91.8.3107 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta Mol Basis Dis 1812:1007–1022. doi: 10.1016/j.bbadis.2011.02.014 CrossRefGoogle Scholar
  49. Vluggens A, Andreoletti P, Viswakarma N, Jia Y, Matsumoto K, Kulik W, Khan M, Huang J, Guo D, Yu S, Sarkar J, Singh I, Rao MS, Wanders RJ, Reddy JK, Cherkaoui-Malki M (2010) Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα. Lab Investig 90:696–708.
  50. Wang YX (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20:124–137PubMedCentralCrossRefPubMedGoogle Scholar
  51. Westerfield M (2000) General methods for zebrafish care. In: The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar
  52. Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res Fund Mol Mech Mut 448:159–177. doi: 10.1016/S0027-5107(99)00234-1 CrossRefGoogle Scholar
  53. Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT (2002) Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 34:481–488CrossRefPubMedGoogle Scholar
  54. Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, Luo J, De Marzo AM, Isaacs WB (2005) Peroxisomal branched chain fatty acid β-oxidation pathway is upregulated in prostate cancer. Prostate 63:316–323. doi: 10.1002/pros.20177 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tânia Vieira Madureira
    • 1
    • 2
    Email author
  • L. Filipe C. Castro
    • 1
    • 3
  • Eduardo Rocha
    • 1
    • 2
  1. 1.CIIMAR – Interdisciplinary Centre of Marine and Environmental ResearchU.Porto – University of PortoPortoPortugal
  2. 2.Laboratory of Histology and Embryology, Department of Microscopy, ICBAS – Institute of Biomedical Sciences Abel SalazarU.Porto – University of PortoPortoPortugal
  3. 3.Department of Biology, FCUP – Faculty of SciencesU.Porto – University of PortoPortoPortugal

Personalised recommendations