Fish Physiology and Biochemistry

, Volume 41, Issue 6, pp 1403–1417

Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios)

  • Yair Y. Kohn
  • Jane E. Symonds
  • Torsten Kleffmann
  • Shinichi Nakagawa
  • Malgorzata Lagisz
  • P. Mark Lokman
Article

Abstract

In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.

Keywords

Hapuku Polyprion oxygeneios Egg quality Proteomics iTRAQ Biomarkers 

References

  1. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts and new words. Electrophoresis 19:1853–1861CrossRefPubMedGoogle Scholar
  2. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183CrossRefPubMedGoogle Scholar
  3. Bates D, Maechler M, Bolker B (2011). lme4: linear mixed-effects models R package, version 0.999375-42. http://CRAN.R-project.org/package=lme4. Accessed 2 Dec 2013
  4. Castets M-D, Schaerlinger B, Silvestre F, Gardeur J-N, Dieu M, Corbier C, Kestemont P, Fontaine P (2012) Combined analysis of Perca fluviatilis reproductive performance and oocyte proteomic profile. Theriogenology 778:432–442CrossRefGoogle Scholar
  5. Cerda J, Bobe J, Babin PJ, Admon A, Lubzens E (2008) Functional genomics and proteomic approaches for the study of gamete formation and viability in farmed finfish. Rev Fish Sci 16:56–72CrossRefGoogle Scholar
  6. Chapman RW, Reading BJ, Sullivan CG (2014) Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis. PLoS ONE 9:e96818PubMedCentralCrossRefPubMedGoogle Scholar
  7. Chenau J, Michelland S, Sidibe J, Seve M (2008) Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome Sci 6:9PubMedCentralCrossRefPubMedGoogle Scholar
  8. Christoforou AL, Lilley KS (2012) Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 404:1029–1037CrossRefPubMedGoogle Scholar
  9. Crespel A, Rime H, Fraboulet E, Bobe J, Fauvel C (2008) Egg quality in domesticated and wild seabass (Dicentrarchus labrax): a proteomic analysis. Cybium 32:205Google Scholar
  10. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:967–989CrossRefGoogle Scholar
  11. Evans C, Noirel J, Ow SY, Salim M, Pereire-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027CrossRefPubMedGoogle Scholar
  12. Forné I, Abián J, Cerda J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858–872CrossRefPubMedGoogle Scholar
  13. Gandolfi TALB, Gandolfi F (2001) The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55:1255–1276CrossRefPubMedGoogle Scholar
  14. Haas IG (1994) BiP (GRP78), an essential hsp 70 resident protein in the endoplasmic reticulum. Experientia 50:1012–1020CrossRefPubMedGoogle Scholar
  15. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9:1885–1897PubMedCentralCrossRefPubMedGoogle Scholar
  16. Knoll-Gellida A, Andre M, Gattegno T, Forgue J, Admon A, Babin PJ (2006) Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genom 7:46CrossRefGoogle Scholar
  17. Kohn YY, Symonds JE (2012) Evaluation of egg quality parameters as predictors of hatching success and early larval survival in hapuku (Polyprion oxygeneios). Aquaculture 342–343:42–47CrossRefGoogle Scholar
  18. Lanes CFC, Bizuayehu TT, de Oliveira Fernandes JM, Kiron V, Babiak I (2013) Transcriptome of Atlantic cod (Gadus morhua L.) early embryos from farmed and wild broodstocks. Mar Biotechnol 15:677–694CrossRefPubMedGoogle Scholar
  19. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Aspects Med 34:919–938PubMedCentralCrossRefPubMedGoogle Scholar
  20. Link V, Shevchenko A, Heisenberg C-P (2006) Proteomics of early zebrafish embryos. BMC Dev Biol 6:1PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lokman PM, Symonds JE (2014) Molecular and biochemical tricks of the research trade: ~ omics approaches in finfish aquaculture. N Z J Mar Freshwater Res 48:492–505CrossRefGoogle Scholar
  22. Ma H, Hostuttler M, Hairong W, Rexroad CE III, Yao JB (2012) Characterization of the rainbow trout egg microRNA transcriptome. PLoS ONE 7:e39649PubMedCentralCrossRefPubMedGoogle Scholar
  23. Mahoney DW, Therneau TM, Heppelmann CJ, Higgins L, Benson LM, Zenka RM, Jagtap P, Nelsestuen GL, Bergen HR, Oberg AL (2011) Relative quantification: characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ-labeled peptides. J Proteome Res 10:4325–4333PubMedCentralCrossRefPubMedGoogle Scholar
  24. Malécot M, Mezhound K, Marie A, Praseuth D, Puiseux-Dao S, Edery M (2009) Proteomic study of mictocystin-LR on organelle and membrane proteins in medaka fish liver. Aquat Toxicol 94:153–161CrossRefPubMedGoogle Scholar
  25. Manly KF, Nettleton D, Gene Hwang JT (2004) Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res 14:997–1001CrossRefPubMedGoogle Scholar
  26. Martyniuk CJ, Denslow ND (2009) Towards functional genomics in fish using quantitative proteomics. Gen Comp Endocrinol 16:135–141CrossRefGoogle Scholar
  27. Martyniuk CJ, Alvarez S, Denslow ND (2012) DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology. Ecotoxicol Environ Saf 76:3–10PubMedCentralCrossRefPubMedGoogle Scholar
  28. Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661–663CrossRefPubMedGoogle Scholar
  29. Moro E, Tomanin R, Frisco A, Modena N, Tiso N, Scarpa M, Argenton F (2010) A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biol 29:43–50CrossRefPubMedGoogle Scholar
  30. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8:5347–5355CrossRefPubMedGoogle Scholar
  31. Palace VP, Werner J (2006) Vitamins A and E in the maternal diet influence egg quality and early life stage development in fish: a review. Scientia Marina 70(Suppl 2):41–57Google Scholar
  32. Papakostas S, Vøllestad LA, Primmer CR, Leder EH (2010) Proteomic profiling of early life stages of European grayling (Thymallus thymallus). J Proteome Res 9:4790–4800CrossRefPubMedGoogle Scholar
  33. R Development Core Team (2012) R foundation for statistical computing. R Development Core Team, ViennaGoogle Scholar
  34. Rime H, Guitton N, Pineau C, Bonnet E, Bobe J, Jalabert B (2004) Post-ovulatory ageing and egg quality: a proteomic analysis of rainbow trout coelomic fluid. Reprod Biol Endocrinol 2:26–35PubMedCentralCrossRefPubMedGoogle Scholar
  35. Robinson EA, Henriksen O, Maxwell ES (1974) Elongation factor 2, amino acid sequence at the site of adenosine diphosphate ribosylation. J Biol Chem 249:5088–5093PubMedGoogle Scholar
  36. Rodrigues PM, Silva TS, Dias J, Jessen F (2012) Proteomics in aquaculture: applications and trends. J Proteomics 75:4325–4345CrossRefPubMedGoogle Scholar
  37. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefPubMedGoogle Scholar
  38. Salze G, Tocher DR, Roy WJ, Robertson DR (2005) Egg quality determinants in cod (Gadus morhua L.): egg performance and lipids in eggs from farmed and wild broodstock. Aquac Res 36:1488–1499CrossRefGoogle Scholar
  39. Sanchez BC, Ralston-Hooper K, Sepúlveda MS (2011) Review of recent proteomic applications in aquatic toxicology. Environ Toxicol Chem 30:274–282CrossRefPubMedGoogle Scholar
  40. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342CrossRefPubMedGoogle Scholar
  41. Shields RJ, Brown NP, Bromage NR (1997) Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155:1–12CrossRefGoogle Scholar
  42. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462CrossRefPubMedGoogle Scholar
  43. Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefPubMedGoogle Scholar
  44. Yoshikuni M, Sagegami R, Nagahama Y (2003) Proteome analysis: a new approach to identify key proteins involved in acquisition of maturational competence and oocyte maturation of medaka oocytes. Fish Physiol Biochem 28:379–380CrossRefGoogle Scholar
  45. Zieske LR (2006) A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J Exp Bot 57:1501–1508CrossRefPubMedGoogle Scholar
  46. Ziv T, Gattegno T, Chapovetsky V, Wolf H, Barnea E, Lubzens E, Admon A (2008) Comparative proteomics of the developing fish (zebrafish and gilthead seabream) oocytes. Comp Biochem Physiol 3D:12–35Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yair Y. Kohn
    • 1
    • 2
    • 4
  • Jane E. Symonds
    • 2
  • Torsten Kleffmann
    • 3
  • Shinichi Nakagawa
    • 5
  • Malgorzata Lagisz
    • 5
  • P. Mark Lokman
    • 1
  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  2. 2.Bream Bay Aquaculture ParkNIWARuakakaNew Zealand
  3. 3.Centre for Protein ResearchUniversity of OtagoDunedinNew Zealand
  4. 4.Arava Research and Development StationHatzevaIsrael
  5. 5.Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations