Fish Physiology and Biochemistry

, Volume 41, Issue 2, pp 463–472 | Cite as

Hematological, morphological, biochemical and hydromineral responses in Rhamdia quelen sedated with propofol

  • Luciane Tourem Gressler
  • Fernando Jonas Sutili
  • Sílvio Teixeira da Costa
  • Thaylise Vey Parodi
  • Tanise da Silva Pês
  • Gessi Koakoski
  • Leonardo José Gil Barcellos
  • Bernardo Baldisserotto


Rhamdia quelen morphophysiological responses to propofol sedation were examined. The purpose was to investigate whether propofol would be a suitable drug to be used in fish transport procedures. Fish were exposed to 0, 0.4 or 0.8 mg L−1 propofol for 1, 6 or 12 h in 40 L tanks, simulating open transport systems. Propofol was able to prevent the peak of cortisol levels experienced by the group exposed to 0 mg L−1 propofol at 1 h. At 0.4 mg L−1, propofol also preserved the stability of hematological (hematocrit, red blood cell count, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration), morphological (red blood cell area), biochemical (cortisol, glucose, lactate, total protein, ammonia, urea, alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase) and hydromineral (Na+, Cl and K+ plasma levels) indicators of stress. Such results suggest that sedation with propofol at 0.4 mg L−1 is suitable for R. quelen transport.


Transport Stress Hematology Morphology Biochemistry 



The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for research fellowship to B. Baldisserotto and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) for graduate fellowship to L. Gressler.


  1. Barcellos LJG, Kreutz LC, Rodrigues LB et al (2003) Haematological and biochemical characteristics of male jundiá (Rhamdia quelen Quoy and Gaimard Pimelodidae) and hormonal and biochemical changes after acute stress. Aquac Res 34:1465–1469CrossRefGoogle Scholar
  2. Barcellos LJG, Kreutz LC, Koakoski G, Oliveira TA, Rosa JGS, Fagundes M (2012) Fish age, instead of weight and size, as a determining factor for time course differences in cortisol response to stress. Physiol Behav 107:397–400CrossRefPubMedGoogle Scholar
  3. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 10:3–26CrossRefGoogle Scholar
  4. Becker AG, Parodi TV, Heldwein CG, Zeppenfeld CC, Heinzmann BM, Baldisserotto B (2012) Transportation of silver catfish, Rhamdia quelen, in water with eugenol and the essential oil of Lippia alba. Fish Physiol Biochem 38:789–796CrossRefPubMedGoogle Scholar
  5. Benfey TJ, Sutterlin AM, Thompson RJ (1984) Use of erythrocyte measurements to identify triploid salmonids. Can J Fish Aquat Sci 41:980–984CrossRefGoogle Scholar
  6. Benovit SC, Gressler LT, Silva LL, Garcia LO, Okamoto MH, Pedron JS, Sampaio LA, Rodrigues RV (2012) Anesthesia and transport of Brazilian Flounder, Paralichthys orbignyanus, with essential oils of Aloysia gratissima and Ocimum gratissimum. J World Aquacult Soc 43:896–900CrossRefGoogle Scholar
  7. Bolasina SN (2006) Cortisol and hematological response in Brazilian codling, Urophycis brasiliensis (Pisces, Phycidae) subjected to anesthetic treatment. Aquacult Int 14:569–575CrossRefGoogle Scholar
  8. Bressler K, Ron B (2004) Effect of anesthetics on stress and the innate immune system of gilthead seabream (Sparus aurata). Isr J Aquac 56:5–13Google Scholar
  9. Brow BA (1976) Hematology: principles and procedures. Lea and Febiger, PhiladelphiaGoogle Scholar
  10. Buin TM, Phuong NT, Nguyen GH, De Silva SS (2013) Fry and fingerling transportation in the striped catfish, Pangasianodon hypophthalmus, farming sector, Mekong Delta, Vietnam: a pivotal link in the production chain. Aquaculture 388–391:70–75Google Scholar
  11. Cho GK, Heath DD (2000) Comparison of tricaine methanesulphonate (MS-222) and clove oil anaesthesia effects on the physiology of juvenile chinook salmon Oncorhynchus tshawytscha (Walbaum). Aquac Res 31:537–546CrossRefGoogle Scholar
  12. Colt J (2002) List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish hatchery management, 2nd ed. American Fish Society Publication. Accessed 22 July 2013
  13. Conceição LEC, Aragão C, Dias J, Costas B, Terova G, Martins C, Tort L (2012) Dietary nitrogen and fish welfare. Fish Physiol Biochem 38:119–141CrossRefPubMedGoogle Scholar
  14. Davidson GW, Davie PS, Young G, Fowler RT (2000) Physiological responses of rainbow trout Oncorhynchus mykiss to crowding and anesthesia with Aqui-S. J World Aquacult Soc 31:105–114CrossRefGoogle Scholar
  15. Davis KB, Griffin BR (2004) Physiological responses of hybrid striped bass under sedation by several anaesthetics. Aquaculture 233:531–548CrossRefGoogle Scholar
  16. Dorafshan S, Kalbassi MR, Pourkazemi M, Amiri B, Karimi S (2008) Effects of triploidy on the Caspian salmon Salmo trutta caspius haematology. Fish Physiol Biochem 34:195–200CrossRefPubMedGoogle Scholar
  17. Filiciotto F, Buscaino G, Buffa G, Bellante A, Maccarrone V, Mazzola S (2012) Anaesthetic qualities of eugenol and 2-phenoxyethanol and their effect on some haematological parameters in farmed European sea bass (Dicentrarchus labrax L.). J Anim Vet Adv 11:494–502CrossRefGoogle Scholar
  18. Franklin CE, Davison W, Mckenzie JC (1993) The role of the spleen during exercise in the Antarctic teleost, Pagothenia borchgrevinki. J Exp Biol 174:381–386Google Scholar
  19. Fukushima H, Bailone RL, Weiss LA, Martins ML, Zaniboni-Filho E (2012) Triploidy in the hematology of jundia juveniles (Siluriformes: Heptapteridae). Braz J Biol 72:147–151CrossRefPubMedGoogle Scholar
  20. Gomulka P, Wlasow T, Velisek J, Svobodova Z, Chmielinska E (2008) Effects of eugenol and MS-222 anaesthesia on Siberian sturgeon Acipenser baerii Brandt. Acta Vet Brno 77:447–453CrossRefGoogle Scholar
  21. Gressler LT, Parodi TV, Riffel APK, da Costa ST, Baldisserotto B (2012a) Immersion anaesthesia with tricaine methanesulfonate or propofol on different sizes and strains of Rhamdia quelen. J Fish Biol 81:1436–1445CrossRefPubMedGoogle Scholar
  22. Gressler LT, Riffel APK, Parodi TV et al (2012b) Rhamdia quelen immersion anaesthesia with essential oil of Aloysia triphylla (L’Hérit) Britton or tricaine methanesulfonate: effect on stress response and antioxidant status. Aquac Res 45:1061–1072CrossRefGoogle Scholar
  23. Grouds RM, Morgan M, Lumley J (1985) Some studies on the properties of the intravenous anaesthetic, propofol (Diprivan): a review. Postgrad Med J 61:90–95Google Scholar
  24. Iversen M, Finstad B, McKinley RS, Eliassen RA (2003) The efficacy of metomidate, clove oil, Aqui-S and Benzoak as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture 221:549–566CrossRefGoogle Scholar
  25. Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anesthetics on acid-base balance, hematocrit, blood gases, cortisol and adrenaline in rainbow trout. Can J Zool 67:2065–2073CrossRefGoogle Scholar
  26. Kajimura M, Croke SJ, Glover CN, Wood CM (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002CrossRefPubMedGoogle Scholar
  27. King WV, Hooper B, Hillsgrove S, Benton C, Berlinsky D (2005) The use of clove oil, metomidate, tricaine, methanesulphonate and 2-phenoxyethanol for inducing anaesthesia and their effect on the cortisol stress response in black sea bass (Centropristis striata L.). Aquac Res 36:1442–1449CrossRefGoogle Scholar
  28. Koakoski G, Oliveira TA, Rosa JGS, Fagundes M, Kreutz LC, Barcellos LJG (2012) Divergent time course of cortisol response to stress in fish of different ages. Physiol Behav 106:129–132CrossRefPubMedGoogle Scholar
  29. Laidley CW, Leatherland JF (1988) Cohort sampling, anaesthesia and stocking-density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:73–88CrossRefGoogle Scholar
  30. Maricchiolo G, Genovese L (2011) Some contributions to knowledge of stress response in innovative species with particular focus on the use of the anaesthetics. Open Mar Biol J 5:24–33CrossRefGoogle Scholar
  31. Mather LE, Selby DG, Runciman WB, McLean CF (1989) Propofol: assay and regional mass balance in the sheep. Xenobiotica 19:1337–1347CrossRefPubMedGoogle Scholar
  32. Matot I, Neely CF, Katz RY, Neufeld GR (1993) Pulmonary uptake of propofol in cats. Anethesiology 78:1157–1165CrossRefGoogle Scholar
  33. Matsche MA (2011) Evaluation of tricaine methanesulfonate (MS-222) as a surgical anesthetic for Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus. J Appl Ichthyol 27:600–610CrossRefGoogle Scholar
  34. McDonald DG, Robinson JG (1993) Physiological responses of lake trout to stress: effects of water hardness and genotype. Trans Am Fish Soc 122:1146–1155CrossRefGoogle Scholar
  35. Molinero A, Gonzalez J (1995) Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (Sparus aurata L.) during confinement. Comp Biochem Physiol 3:405–414CrossRefGoogle Scholar
  36. Olsen YA, Einarsdottir IE, Nilssen KJ (1995) Metomidate anaesthesia in Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress. Aquaculture 134:155–168CrossRefGoogle Scholar
  37. Pádua SB, Ventura AS, Satake F, Ishikawa MM, Hisano H, Rotta MA, Arantes FC (2012) Respostas hematológicas em tuvira após anestesia com diferentes concentrações de óleo de cravo. Bol Inst Pesca 38:181–188Google Scholar
  38. Pagel PS, Warltier DC (1993) Negative inotropic effects of propofol as evaluated by the regional preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology 78:100–108CrossRefPubMedGoogle Scholar
  39. Rosenfeld G (1947) Corante pancrômico para hematologia e citologia clínica. Nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Mem Inst Butantan 20:329–334Google Scholar
  40. Ross LG, Blanco JS, Martinez-Palacios C, Racotta IE, Cuevas MT (2007) Anaesthesia, sedation and transportation of juvenile Menidia estor (Jordan) using benzocaine and hypothermia. Aquac Res 38:909–917CrossRefGoogle Scholar
  41. Rotllant J, Balm PH, Perez-Sanchez J, Wendelaar-Bonga SE, Tort L (2001) Pituitary and interrenal function in gilthead sea bream (Sparus aurata L., Teleostei) after handling and confinement stress. Gen Comp Endocrinol 121:333–342CrossRefPubMedGoogle Scholar
  42. Schoettger RA, Julin AM (1967) Efficacy of MS-222 as an anaesthetic on four salmonids. Invest Fish Con US Dept Int 13:1–15Google Scholar
  43. Sladky KK, Swanson CR, Stoskopf MK, Loomis MR, Lewbart GA (2001) Comparative efficacy of tricaine methanesulfonate and clove oil for use as anesthetics in red pacu (Piaractus brachypomus). AJVR 62:337–342CrossRefGoogle Scholar
  44. Small BC (2004) Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors. Aquaculture 238:469–481CrossRefGoogle Scholar
  45. Speckner W, Schindlerand JF, Albers C (1989) Age-dependent changes in volume and haemoglobin content of erythrocytes in the carp (Cyprinus Carpio L.). J Exp Biol 141:133–149PubMedGoogle Scholar
  46. Sudagara M, Mohammadizarejabada A, Mazandarania R, Pooralimotlagha S (2009) The efficacy of clove powder as an anesthetic and its effects on hematological parameters on roach (Rutilus rutilus). J Aqua Feed Sci Nutr 1:1–5Google Scholar
  47. Tavares-Dias M, Melo JFB, Moraes G, Moraes FR (2002) Características hematológicas de teleósteos brasileiros: VI. Variáveis do jundiá Rhamdia quelen (Pimelodidae). Ciência Rural 32:693–698CrossRefGoogle Scholar
  48. Thomas P, Robertson L (1991) Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate. Aquaculture (Amsterdam) 1:69–86CrossRefGoogle Scholar
  49. Tort L, Puigcerver M, Crespo S, Padrós F (2002) Cortisol and haematological response in sea bream and trout subjected to the anaesthetics clove oil and 2-phenoxyethanol. Aquac Res 33:907–910CrossRefGoogle Scholar
  50. Velisek J, Svobodova Z, Piackova V, Groch L, Nepejchalova L (2005a) Effects of clove oil anaesthesia on common carp (Cyprinus carpio L.). Vet Med Czech 50:269–275Google Scholar
  51. Velisek J, Svobodova Z, Piackov V (2005b) Effects of clove oil anaesthesia on rainbow trout (Oncorhynchus mykiss). Acta Vet Brno 74:139–146CrossRefGoogle Scholar
  52. Velisek J, Stejskal V, Kouril J, Svobodova A (2009) Comparison of the effects of four anaesthetics on biochemical blood profiles of perch. Aquac Res 40:354–361CrossRefGoogle Scholar
  53. Verdouw H, Van Echaematocriteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenols formation with sodium salicylate. Water Res 12:399–402CrossRefGoogle Scholar
  54. Wagner GN, Singer TD, Mckinley RS (2003) The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Res 34:1139–1146CrossRefGoogle Scholar
  55. Wells RMG, Weber RE (1990) The spleen in hypoxic and exercised rainbow trout. J Exp Biol 150:461–466Google Scholar
  56. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625PubMedGoogle Scholar
  57. Wintrobe MM (1934) Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol 51:32–49Google Scholar
  58. Zahl IH, Samuelsen OB, Kiessling A (2012) Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38:201–218CrossRefPubMedGoogle Scholar
  59. Zall DM, Fisher MD, Garner QM (1956) Photometric determination of chlorides in water. Anal Chem 28:1665–1678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luciane Tourem Gressler
    • 1
  • Fernando Jonas Sutili
    • 1
  • Sílvio Teixeira da Costa
    • 2
  • Thaylise Vey Parodi
    • 1
  • Tanise da Silva Pês
    • 1
  • Gessi Koakoski
    • 1
  • Leonardo José Gil Barcellos
    • 3
  • Bernardo Baldisserotto
    • 1
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Zootecnia do Centro de Educação Superior Norte do Rio Grande do SulUniversidade Federal de Santa MariaPalmeira das MissõesBrazil
  3. 3.Curso de Medicina VeterináriaUniversidade de Passo FundoPasso FundoBrazil

Personalised recommendations