Fish Physiology and Biochemistry

, Volume 40, Issue 6, pp 1801–1816 | Cite as

Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): cloning, characterization and expression pattern to crowding and hypoxia stress

  • Meng Ni
  • Haishen Wen
  • Jifang Li
  • Meili Chi
  • Yuanyuan Ren
  • Zhifei Song
  • Houmeng Ding
Article

Abstract

In this study, the cDNA sequences of HSP70 and HSP90 were isolated from the special chondr-ganoid scale, Amur sturgeon, for the first time. Homology analysis indicated that amino acid sequences of HSP70 and HSP90 shared high identity with other species (82.68–99.07 and 90.19–98.07 %, respectively). The tissue expression analysis showed that the asHSP70 and asHSP90 mRNA were ubiquitously expressed in all the examined tissues under unstressed condition. The expression pattern of HSP70 and HSP90 under chronic (crowding) and acute (hypoxia) stress was examined by q-PCR in liver, spleen and kidney. Results showed that stocking density could significantly influence the expression of HSP70 at day 20 and/or day 40. In contrast to stocking density, levels of HSP70 transcripts indicated a remarkable increase in all examined tissues after hypoxia stress. HSP90 levels in liver and spleen increased significantly in high stocking density. By comparison, significant increase of asHSP90 in kidney was only found in high stocking density at day 40. Similar to HSP70, the levels of HSP90 transcripts showed significant increases after hypoxia stress except the transcript of liver in H2 group 6 h after hypoxia. The assessment of asHSP70 and asHSP90 mRNA levels under crowding and hypoxia stresses indicated that asHSP70 and asHSP90 gene might be good indicators of stressful situations for Amur sturgeon. Taking serum globulin and electrolytes account, we suggest that crowding and hypoxia stress can result in considerable stress for Amur sturgeon.

Keywords

Acipenser schrenckii Heat shock protein 70 Heat shock protein 90 Stocking density Hypoxia 

References

  1. Agrahari S, Pandey KC, Gopal K (2007) Biochemical alteration induced by monocrotophos in the blood plasma of fish Channa punctatus (Bloch). Pestic Biochem Physiol 88:268–272CrossRefGoogle Scholar
  2. Airaksinen A, Rabergh CMI, Sistonen L, Nikinmaa M (1998) Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells. J Exp Biol 201:2543–2551PubMedGoogle Scholar
  3. Aksakal E, Ekinci D, Erdoğan O, Beydemir S, Alım Z, Ceyhun SB (2011) Increasing stocking density causes inhibition of metabolic–antioxidant enzymes and elevates mRNA levels of heat shock protein 70 in rainbow trout. Livest Sci 141:69–75CrossRefGoogle Scholar
  4. Alfredo M, Frederic B, Ferenc M (2000) Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett 474:5–10CrossRefGoogle Scholar
  5. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183PubMedCrossRefGoogle Scholar
  6. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fishes 48:25–71CrossRefGoogle Scholar
  7. Biswas AK, Seoka M, Takii K, Maita M, Kumai H (2006) Stress response of red sea bream Pagrus major to acute handling and chronic photoperiod manipulation. Aquaculture 252:566–572CrossRefGoogle Scholar
  8. Bukau B, Horwich AL (1998) The HSP70 and Hsp60 chaperone machines. Cell Pres 92:351–366CrossRefGoogle Scholar
  9. Caipang CMA, Brinchmann MF, Berg I, Iversen M, Eliassen R, Kiron V (2008) Changes in selected stress and immune–related genes in Atlantic cod, Gadus morhua, following overcrowding. Aquacult Res 39:1533–1540CrossRefGoogle Scholar
  10. Dang W, Hu Y, Zhang M, Sun L (2010) Identification and molecular analysis of a stress–inducible HSP70 from Sciaenops ocellatus. Fish Shellfish Immunol 29:600–607PubMedCrossRefGoogle Scholar
  11. Deane EE, Woo NYS (2010) Growth hormone attenuates branchial HSP70 expression in silver sea bream. Fish Physiol Biochem 36:135–140PubMedCrossRefGoogle Scholar
  12. Demand J, Lüders J, Höhfeld J (1998) The carboxy–terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18(4):2023–2028PubMedCentralPubMedGoogle Scholar
  13. Douxfils J, Deprez M, Mandiki SN, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P (2012) Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication–clues to physiological acclimation and humoral immune modulations. Fish Shellfish Immunol 33(5):1112–1122PubMedCrossRefGoogle Scholar
  14. Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61:493–531CrossRefGoogle Scholar
  15. Feder ME, Hofmann GE (1999) Heat–shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282PubMedCrossRefGoogle Scholar
  16. Gamperl AK, Vijayan MM, Pereira C, Farrell AP (1998) β-Receptors and stress protein 70 expression in hypoxic myocardium of rainbow trout and chinook salmon. Am J Physiol 274:428–436Google Scholar
  17. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45PubMedCrossRefGoogle Scholar
  18. Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004a) Rearing density influences the expression of stress–related genes in sea bass (Dicentrarchus labrax, L). Gene 341:111–118PubMedCrossRefGoogle Scholar
  19. Gornati R, Terova G, Vigetti D, Prati M, Saroglia M, Bernardini G (2004b) Effects of population density on seabass (Dicentrarchus labrax L.) gene expression. Aquaculture 230:229–239CrossRefGoogle Scholar
  20. Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants and fungi species. Mol Biol Evol 12(6):1063–1073PubMedGoogle Scholar
  21. Hrubec TC, Smith SA, Robertson JL, Feldman B, Veit HP, Libey G, Tinker MK (1996) Blood biochemical reference intervals for sunshine bass (Morone chrysops × Morone saxatilis) in three culture systems. Am J Vet Res 57:624–627PubMedGoogle Scholar
  22. Hrubec TC, Cardinale JL, Smith SA (2000) Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Vet Clin Pathol 29:7–12PubMedCrossRefGoogle Scholar
  23. Huang Y, Cai X, Zou Z, Wang S, Wang G, Wang Y, Zhang Z (2014) Molecular cloning, characterization and expression analysis of three heat shock responsive genes from Haliotis diversicolor. Fish Shellfish Immunol 36(2):590–599PubMedCrossRefGoogle Scholar
  24. Imorou T, Emile D, Fiogbe BK, Patrick K (2007) Rearing of African catfish (Clarias gariepinus) and vundu catfish (Heterobranchus longifilis) in traditional fish ponds (whedos): effect of stocking density on growth, production and body composition. Aquaculture 262:165–172Google Scholar
  25. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247PubMedCrossRefGoogle Scholar
  26. Kiang JG, Tsokos GC (1998) Heat Shock Protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Therapeut 80:183–201CrossRefGoogle Scholar
  27. Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, Li S, Xiang J (2009) Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperon 14(2):161–172CrossRefGoogle Scholar
  28. Li XF, Liu WB, Lu KL, Xu WN, Wang Y (2012) Dietary carbohydrate/lipid ratios affect stress, oxidative status and non–specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol 33:316–323PubMedCrossRefGoogle Scholar
  29. Lindquist S, Craig EA (1988) The heat–shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  30. Livak KJ, Schmittgen TD (2002) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  31. Lückstädt C, Schill RO, Focken U, Köhler HR, Becker K (2004) Stress protein HSP70 response of Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) to induced hypoxia and recovery. Verh Ges Ichthyol Bd 4:137–141Google Scholar
  32. Ludwig A (2008) Identification of Acipenseriform species in trade. J Appl Ichthyol 24:2–19CrossRefGoogle Scholar
  33. Ma KX, Chen GW, Liu DZ (2012) cDNA cloning of heat shock protein 90 gene and protein expression pattern in response to heavy metal exposure and thermal stress in planarian Dugesia japonica. Mol Biol Rep 39:7203–7210PubMedCrossRefGoogle Scholar
  34. Marber MS, Mestril R, Chi SH, Sayen R, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456PubMedCentralPubMedCrossRefGoogle Scholar
  35. Martinovic D, Villeneuve DL, Kahl MD, Blake LS, Brodin JD, Ankley GT (2009) Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio). Aquat Toxicol 95:258–272PubMedCrossRefGoogle Scholar
  36. Ming JH, Xie J, Xu P, Liu WB, Ge XP, Liu B, He YJ, Cheng YF, Zhou QL, Pan LK (2010) Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol 28(3):407–418PubMedCrossRefGoogle Scholar
  37. Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60CrossRefGoogle Scholar
  38. Mu W, Wen H, Li J, He F (2013) Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli). Fish Shellfish Immunol 35(4):1111–1121PubMedCrossRefGoogle Scholar
  39. Mulero I, Garciae-Ayala A, Meseguer J, Mulero V (2007) Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish: a mini review. Aquaculture 268:244–250CrossRefGoogle Scholar
  40. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424PubMedCrossRefGoogle Scholar
  41. Ni M, Wen H, Li J, Chi M, Bu Y, Ren Y, Zhang M, Song Z, Ding H (2013) The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol 36(2):325–335PubMedCrossRefGoogle Scholar
  42. North BP, Turnbull JF, Ellis T (2006) The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255:466–479CrossRefGoogle Scholar
  43. Palmisano AN, Winton JR, Dickhoff WW (2000) Tissue-specific induction of HSP90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar Biotechnol 2:329–338PubMedGoogle Scholar
  44. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648PubMedCrossRefGoogle Scholar
  45. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476PubMedCrossRefGoogle Scholar
  46. Pratt WB (1997) The role of the HSP90 based chaperone system in signal transduction by nuclear receptors and receptor signaling via map kinase. Annu Rev Pharmacol Toxicol 37:297–326PubMedCrossRefGoogle Scholar
  47. Rehulka J (2000) Influence of astaxanthin on growth rate condition and some blood indexes of rainbow trout Oncorhynchus mykiss. Aquaculture 190:27–47CrossRefGoogle Scholar
  48. Roque A, Yildiz HY, Carazo I, Duncan N (2010) Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen peroxide (H2O2) exposure. Aquaculture 304:104–107CrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Salas-Leiton E, Anguis V, Martín-Antonio B, Crespo D, Planas JV, Infante C, Cañavate JP, Manchado M (2010) Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol 28:296–302PubMedCrossRefGoogle Scholar
  51. Schram E, Van der Heul JW, Kamstra A, Verdegem MCJ (2006) Stocking density-dependent growth of Dover sole (Solea solea). Aquaculture 252:339–347CrossRefGoogle Scholar
  52. Schreck CB, Olla BL, Davis MW (1997) Behavioral responses to stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture society for experimental biology seminar series, vol 62. Cambridge University Press, Cambridge, pp 145–170Google Scholar
  53. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  54. Su XR, Du LL, Li YY, Li Y, Zhou J, Li TW (2010) Cloning and expression of HSP70 gene of sipuncula Phascolosoma esculenta. Fish Shellfish Immunol 28:461–466PubMedCrossRefGoogle Scholar
  55. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  56. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  57. Ton C, Stamatiou D, Dzau VJ, Liew CC (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun 296:1134–1142PubMedCrossRefGoogle Scholar
  58. Tsan M, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:739–744CrossRefGoogle Scholar
  59. Wallin RP, Lundqvist A, More SH, Von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135PubMedCrossRefGoogle Scholar
  60. Weigl E, Kopecek P, Raska M, Hradilova S (1999) Heat shock proteins in immune reactions. Folia Microbiol 44:561–566CrossRefGoogle Scholar
  61. Wu RS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45PubMedCrossRefGoogle Scholar
  62. Yang DG, Zhu YJ, Luo YP, Zhao JH, Chen JW (2011) Effect of stocking density on growth performance of juvenile Amur Sturgeon (Acipenser schrenckii). J Appl Ichthyol 27:541–544CrossRefGoogle Scholar
  63. Yue X, Liu B, Sun L, Tang B (2011) Cloning and characterization of a HSP70 gene from Asiatic hard clam Meretrix meretrix which is involved in the immune response against bacterial infection. Fish Shellfish Immunol 30:791–799PubMedCrossRefGoogle Scholar
  64. Zhuang P, Kynard B, Zhang L, Zhang T, Zhang Z, Li D (2002) Overview of biology and aquaculture of Amur sturgeon (Acipenser schrenckii) in China. J Appl Ichthyol 18:659–664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Meng Ni
    • 1
  • Haishen Wen
    • 1
  • Jifang Li
    • 1
  • Meili Chi
    • 1
  • Yuanyuan Ren
    • 1
  • Zhifei Song
    • 1
  • Houmeng Ding
    • 1
  1. 1.Fisheries CollegeOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations