Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 3, pp 797–804 | Cite as

Innate humoral immune parameters in Tilapia zillii under acute stress by low temperature and crowding

  • Nadjoua Chebaani
  • Francisco A. Guardiola
  • Merbah Sihem
  • Adjajdi Nabil
  • Mustapha Oumouna
  • José Meseguer
  • María A. Esteban
  • Alberto CuestaEmail author
Article

Abstract

Redbelly tilapia (Tilapia zillii; Gervais, 1848) is one of the most valuable freshwater species in North Africa representing an important part of the continental production, especially in brackish lakes. In Algeria, T. zillii is distributed in several lakes and tributaries of some rivers in the south. Though some attempts are in progress to culture this species, many investigations covering its biology and farm management are still needed. In this sense, this is the first study attempting to evaluate some of the T. zillii immune parameters and valuable data to assess their health and well-being status. Thus, we have determined the levels of serum peroxidases as well as the alternative complement, antiprotease and bactericidal activities. Furthermore, we have also evaluated the potential impact of two acute stress factors, commonly found in fish farms, in these parameters. Although it was assessed that fish exposed to low temperatures or crowding were stressed, as indicated by their increased serum levels of cortisol and glucose, both acute stressors failed to significantly affect serum peroxidases as well as antiprotease and complement activities. However, the bactericidal activity was reduced in general but only in those exposed to crowding reached statistical significance. Further studies are needed to characterise the immune response in T. zillii as well as the effects that farming stresses may produce.

Keywords

Redbelly tilapia (Tilapia zilliHumoral immunity Stress Cortisol Fish 

Notes

Acknowledgments

Alberto Cuesta wants to thank the Ministerio de Economía y Competitividad for Ramón y Cajal research contract. Work-plan and N. Cheebani stay were supported by a Universidad de Murcia-Centre National pour la Recherche et le Développement de la Pêche et l’Aquaculture (CNRDPA) Cooperation and Development project funded by the Universidad de Murcia and CAJAMAR. The financial support of the Fundación Séneca de la Región de Murcia (Spain) (Grant no. 04538/GERM/06, Grupo de Excelencia de la Región de Murcia) is gratefully acknowledged.

References

  1. Auperin B, Baroiller JF, Ricordel MJ, Fostier A, Prunet P (1997) Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshwater-adapted tilapia (Oreochromis niloticus). Gen Comp Endocrinol 108:35–44PubMedCrossRefGoogle Scholar
  2. Binuramesh C, Michael RD (2011) Diel variations in the selected serum immune parameters in Oreochromis mossambicus. Fish Shellfish Immunol 30:824–829PubMedCrossRefGoogle Scholar
  3. Chen WH, Sun LT, Tsai CL, Song YL, Chang CF (2002) Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. Gen Comp Endocrinol 126:90–100PubMedCrossRefGoogle Scholar
  4. Cuesta A, Esteban MA, Meseguer J (2003) Effects of different stressor agents on gilthead seabream natural cytotoxic activity. Fish Shellfish Immunol 15:433–441PubMedCrossRefGoogle Scholar
  5. Cuesta A, Meseguer J, Esteban MA (2011) Molecular and functional characterization of the gilthead seabream beta-defensin demonstrate its chemotactic and antimicrobial activity. Mol Immunol 48:1432–1438PubMedCrossRefGoogle Scholar
  6. El-Dien AH, Abdel-Gaber RA (2009) Ichthyophthirius multifiliis infection induces apoptosis in different species of Tilapia. J Egypt Soc Parasitol 39:665–678PubMedGoogle Scholar
  7. Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Overli O, Martins CI (2012) Cortisol and finfish welfare. Fish Physiol Biochem 38:163–188PubMedCrossRefGoogle Scholar
  8. Elsheikha HM, Elshazly AM (2008) Host-dependent variations in the seasonal prevalence and intensity of heterophyid encysted metacercariae (Digenea: Heterophyidea) in brackish water fish in Egypt. Vet Parasitol 153:65–72PubMedCrossRefGoogle Scholar
  9. Gbankoto A, Pampoulie C, Marques A, Sakiti GN, Dramane KL (2003) Infection patterns of Myxobolus heterospora in two tilapia species (Teleostei: Cichlidae) and its potential effects. Dis Aquat Organ 55:125–131PubMedCrossRefGoogle Scholar
  10. Ghoneum M, Faisal M, Peters G, Ahmed II, Cooper EL (1988) Suppression of natural cytotoxic cell activity by social aggressiveness in Tilapia. Dev Comp Immunol 12:595–602PubMedCrossRefGoogle Scholar
  11. Girón-Pérez MI, Velázquez-Fernández J, Díaz-Resendiz K, Díaz-Salas F, Canto-Montero C, Medina-Diaz I, Robledo-Marenco M, Rojas-García A, Zaitseva G (2009) Immunologic parameters evaluations in Nile tilapia (Oreochromis niloticus) exposed to sublethal concentrations of diazinon. Fish Shellfish Immunol 27:383–385PubMedCrossRefGoogle Scholar
  12. Hanif A, Bakopoulos V, Dimitriadis GJ (2004) Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae. Fish Shellfish Immunol 17:411–435PubMedCrossRefGoogle Scholar
  13. Ibrahim MM, Soliman MF (2010) Prevalence and site preferences of heterophyid metacercariae in Tilapia zilli from Ismalia fresh water canal, Egypt. Parasite 17:233–239PubMedCrossRefGoogle Scholar
  14. Jiang IF, Kumar VB, Lee DN, Weng CF (2008) Acute osmotic stress affects Tilapia (Oreochromis mossambicus) innate immune responses. Fish Shellfish Immunol 25:841–846PubMedCrossRefGoogle Scholar
  15. Mahomoud WF, Amin AMM, Elboray KF, Ramadan AM, EL-Halfawy MMKO (2011) Reproductive biology and some observation on the age, growth, and management of Tilapia zilli (Gerv, 1848) from Lake Timsah, Egypt. Int J Fish Aquac 3:16–26Google Scholar
  16. Mauri I, Romero A, Acerete L, Mackenzie S, Roher N, Callol A, Cano I, Alvarez MC, Tort L (2011) Changes in complement responses in Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) under crowding stress, plus viral and bacterial challenges. Fish Shellfish Immunol 30:182–188PubMedCrossRefGoogle Scholar
  17. Ndong D, Chen YY, Lin YH, Vaseeharan B, Chen JC (2007) The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol 22:686–694PubMedCrossRefGoogle Scholar
  18. Ortuño J, Esteban MA, Mulero V, Meseguer J (1998) Methods for studying the haemolytic, chemoattractant and opsonic activities of seabream (Sparus aurata L.). In: Barnes AC, Davidson GA, Hiney M, McInthos D (eds) Methodology in fish diseases research. pp, Albion Press, pp 97–100Google Scholar
  19. Ortuño J, Esteban MA, Meseguer J (2001) Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response. Fish Shellfish Immunol 11:187–197PubMedCrossRefGoogle Scholar
  20. Ortuño J, Esteban MA, Meseguer J (2002) Effects of four anaesthetics on the innate immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 12:49–59PubMedCrossRefGoogle Scholar
  21. Park KH, Choi SH (2012) The effect of mistletoe, Viscum album coloratum, extract on innate immune response of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 32:1016–1021PubMedCrossRefGoogle Scholar
  22. Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58:239–248PubMedCrossRefGoogle Scholar
  23. Ruis MAW, Bayne CJ (1997) Effects of acute stress on blood clotting and yeast killing by phagocytes of rainbow trout. J Aquat Anim Health 9:190–195CrossRefGoogle Scholar
  24. Salas-Leiton E, Anguis V, Martin-Antonio B, Crespo D, Planas JV, Infante C, Cañavate JP, Manchado M (2010) Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol 28:296–302PubMedCrossRefGoogle Scholar
  25. Téllez-Banuelos MC, Santerre A, Casas-Solís J, Bravo-Cuellar A, Zaitseva G (2009) Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol 27:105–111PubMedCrossRefGoogle Scholar
  26. Terova G, Cattaneo AG, Preziosa E, Bernardini G, Saroglia M (2011) Impact of acute stress on antimicrobial polypeptides mRNA copy number in several tissues of marine sea bass (Dicentrarchus labrax). BMC Immunol 12:69PubMedCentralPubMedCrossRefGoogle Scholar
  27. Teugels GG, Thys van den Audenaerde DFE (1991) Tilapia. In: Daget J, Gosse J-P, Teugels GG, Thys van den Audenaerde DFE (eds) Check-list of the freshwater fishes of Africa (CLOFFA), vol 4. ISNB, Brussels; MRAC, Tervuren; and ORSTOM, Paris, p 482–508Google Scholar
  28. Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375PubMedCrossRefGoogle Scholar
  29. Tort L, Sunyer JO, Gómez E, Molinero A (1996) Crowding stress induces changes in serum haemolytic and agglutinating activity in the gilthead sea bream Sparus aurata. Vet Immunol Immunopathol 51:179–188PubMedCrossRefGoogle Scholar
  30. Upton KR, Riley LG (2013) Acute stress inhibits food intake and alters ghrelin signalling in the brain of tilapia (Oreochromis mossambicus). Domest Anim Endocrinol 44:157–164PubMedCrossRefGoogle Scholar
  31. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625PubMedGoogle Scholar
  32. Wu YR, Gong QF, Fang H, Liang WW, Chen M, He RJ (2013) Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol 34:220–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nadjoua Chebaani
    • 1
  • Francisco A. Guardiola
    • 2
  • Merbah Sihem
    • 1
  • Adjajdi Nabil
    • 1
  • Mustapha Oumouna
    • 1
  • José Meseguer
    • 2
  • María A. Esteban
    • 2
  • Alberto Cuesta
    • 2
    Email author
  1. 1.Centre National pour la Recherche et le Développement de la Pêche et l’Aquaculture (CNRDPA)Bou-IsmailAlgeria
  2. 2.Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”University of MurciaMurciaSpain

Personalised recommendations