Advertisement

Fish Physiology and Biochemistry

, Volume 40, Issue 2, pp 427–443 | Cite as

Postprandial molecular responses in the liver of the barramundi, Lates calcarifer

  • Nicholas M. WadeEmail author
  • Sandrine Skiba-Cassy
  • Karine Dias
  • Brett D. Glencross
Article

Abstract

The regulation of gene expression by nutrients is an important mechanism governing energy storage and growth in most animals, including fish. At present, very few genes that regulate intermediary metabolism have been identified in barramundi, nor is there any understanding of their nutritional regulation. In this study, a partial barramundi liver transcriptome was assembled from next-generation sequencing data and published barramundi EST sequences. A large number of putative metabolism genes were identified in barramundi, and the changes in the expression of 24 key metabolic regulators of nutritional pathways were investigated in barramundi liver over a time series immediately after a meal of a nutritionally optimised diet for this species. Plasma glucose and free amino acid levels showed a mild postprandial elevation which peaked 2 h after feeding, and had returned to basal levels within 4 or 8 h, respectively. Significant activation or repression of metabolic nuclear receptor regulator genes were observed, in combination with activation of glycolytic and lipogenic pathways, repression of the final step of gluconeogenesis and activation of the Akt-mTOR pathway. Strong correlations were identified between a number of different metabolic genes, and the coordinated co-regulation of these genes may underlie the ability of this fish to utilise dietary nutrients. Overall, these data clearly demonstrate a number of unique postprandial responses in barramundi compared with other fish species and provide a critical step in defining the response to different dietary nutrient sources.

Keywords

Fish Liver Metabolism Nutrigenomics 

Notes

Acknowledgments

This work was supported by a grant from the Australian Centre for International Agricultural Research (ACIAR) project FIS-2006-141. We gratefully acknowledge the review of a draft of this manuscript by Katherine Morton.

Supplementary material

10695_2013_9854_MOESM1_ESM.doc (69 kb)
Supplementary material 1 (DOC 69 kb)

References

  1. Allan GL, Booth M, Stone DAJ, Anderson A (2003) Aquaculture diet development subprogram: ingredient evaluation (No. FRDC 1996/391). NSW fisheries final report seriesGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Anemaet IG, Méton I, Salgado MC, Fernández F, Baanante IV (2008) A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata. Int J Biochem Cell Biol 40:2833–2844Google Scholar
  4. Archer A, Lauter G, Hauptmann G, Mode A, Gustafsson J-A (2008) Transcriptional activity and developmental expression of liver X receptor (LXR) in zebrafish. Dev Dyn 237:1090–1098PubMedCrossRefGoogle Scholar
  5. Assimacopoulos-Jeannet F, Jeanrenaud B (1990) Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J Biol Chem 265:7202–7206PubMedGoogle Scholar
  6. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296:E592–E602PubMedCentralPubMedCrossRefGoogle Scholar
  7. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224PubMedCentralPubMedGoogle Scholar
  8. Caseras A, Méton I, Fernandez F, Baanante IV (2000) Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). Biochim Biophys Acta 1493:135–141PubMedCrossRefGoogle Scholar
  9. Caseras A, Méton I, Vives C, Egea M, Fernandez F, Baanante IV (2002) Nutritional regulation of glucose-6-phosphatase gene expression in liver of the Gilthead sea bream (Sparus aurata). Br J Nutr 88:607PubMedCrossRefGoogle Scholar
  10. Catacutan MR, Coloso RM (1997) Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels. Aquaculture 149:137–144CrossRefGoogle Scholar
  11. Cho HK, Kong HJ, Kim HY, Cheong JJ (2011) Characterization of Paralichthys olivaceus peroxisome proliferator-activated receptor-α gene as a master regulator of flounder lipid metabolism. Gen Comp Endocrinol 175:39–47PubMedCrossRefGoogle Scholar
  12. Clarke SDS (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 131:1129–1132PubMedGoogle Scholar
  13. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  14. Craig PM, Moon TW (2011) Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 8:109–117PubMedCrossRefGoogle Scholar
  15. Cruz-Garcia L, Minghetti M, Navarro I, Tocher DR (2009a) Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 153:81–88CrossRefGoogle Scholar
  16. Cruz-Garcia L, Saera-Vila A, Navarro I, Calduch-Giner J, Pérez-Sanchez J (2009b) Targets for TNFalpha-induced lipolysis in gilthead sea bream (Sparus aurata L.) adipocytes isolated from lean and fat juvenile fish. J Exp Biol 212:2254–2260PubMedCrossRefGoogle Scholar
  17. Cruz-Garcia L, Sánchez-Gurmaches J, Gutierrez J, Navarro I (2011) Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes. Comp Biochem Phys A 160:125–136CrossRefGoogle Scholar
  18. Cruz-Garcia L, Sánchez-Gurmaches J, Gutierrez J, Navarro I (2012) Role of LXR in trout adipocytes: target genes, hormonal regulation, adipocyte differentiation and relation to lipolysis. Comp Biochem Phys A 163:120–126CrossRefGoogle Scholar
  19. De Santis C, Smith-Keune C, Jerry DR (2011) Normalizing RT-qPCR data: are we getting the right answers? An appraisal of normalization approaches and internal reference genes from a case study in the Finfish Lates calcarifer. Mar Biotechnol 13:170–180PubMedCrossRefGoogle Scholar
  20. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87:81–86PubMedCrossRefGoogle Scholar
  21. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMedGoogle Scholar
  22. Düvel KK, Yecies JJ, Menon SS, Raman PP, Lipovsky AA, Souza AA, Triantafellow EE, Ma QQ, Gorski RR, Cleaver SS, Vander Heiden MM, MacKeigan JJ, Finan PP, Clish CC, Murphy LL, Manning BB (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:13CrossRefGoogle Scholar
  23. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848PubMedCrossRefGoogle Scholar
  24. Enes P, Peres H, Couto A, Oliva-Teles A (2010) Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 36:903–910PubMedCrossRefGoogle Scholar
  25. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and Gilthead sea bream (Sparus aurata L.) Juveniles. Rev Fish Sci 19:201–215CrossRefGoogle Scholar
  26. Enes P, Pousão-Ferreira P, Salmerón C, Capilla E, Navarro I, Gutierrez J, Oliva-Teles A (2013) Effect of guar gum on glucose and lipid metabolism in White sea bream Diplodus sargus. Fish Physiol Biochem 39:159–169PubMedCrossRefGoogle Scholar
  27. Escher PP, Braissant OO, Basu-Modak SS, Michalik LL, Wahli WW, Desvergne BB (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202PubMedCrossRefGoogle Scholar
  28. Fernandez F, Miquel AG, Cordoba M, Varas M, Méton I, Caseras A, Baanante IV (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10Google Scholar
  29. Figueiredo-Garutti MM, Navarro II, Capilla EE, Souza RR, Moraes GG, Gutiérrez JJ, Vicentini-Paulino MM (2002) Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Phys A 132:467–476CrossRefGoogle Scholar
  30. Fisher G, Arias I, Quesada I, D’Aniello S, Errico F, Di Fiore M, D’Aniello A (2001) A fast and sensitive method for measuring picomole levels of total free amino acids in very small amounts of biological tissues. Amino Acids 20:163–173PubMedCrossRefGoogle Scholar
  31. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealy W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilisation of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579CrossRefGoogle Scholar
  32. Georgiadi A, Kersten S (2012) Mechanisms of gene regulation by fatty acids. Adv Nutr 3:127–134PubMedCentralPubMedCrossRefGoogle Scholar
  33. Girard J, Ferré P, Foufelle F (1997) Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17:325–352PubMedCrossRefGoogle Scholar
  34. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15:391–407PubMedGoogle Scholar
  35. Glencross B (2006) The nutritional management of barramundi, Lates calcarifer: a review. Aquacult Nutr 12:291–309CrossRefGoogle Scholar
  36. Glencross BD, Booth M, Allan GL (2007) A feed is only as good as its ingredients: a review of ingredient evaluation for aquaculture feeds. Aquacult Nutr 13:17–34CrossRefGoogle Scholar
  37. Glencross B, Rutherford N, Jones B (2011) Evaluating options for fishmeal replacement in diets for juvenile barramundi (Lates calcarifer). Aquacult Nutr 17:E722–E732CrossRefGoogle Scholar
  38. Glencross BD, Blyth D, Tabrett SJ, Bourne N, Irvin S, Fox-Smith T, Smullen RP (2012) An examination of digestibility and technical qualities of a range of cereal grains when fed to juvenile barramundi (Lates calcarifer) in extruded diets. Aquacult Nutr 18:388–399CrossRefGoogle Scholar
  39. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  40. Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66:581–611PubMedCrossRefGoogle Scholar
  41. Kalaany NY, Mangelsdorf DJ (2006) LXRs AND FXR: the Yin and Yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191PubMedCrossRefGoogle Scholar
  42. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci 90:2160–2164PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kim S-Y, Kim H-I, Kim T-H, Im S-S, Park S-K, Lee I-K, Kim K-S, Ahn Y-H (2004) SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279:30823–30829PubMedCrossRefGoogle Scholar
  44. Kininis M, Kraus WL (2008) A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 6:e005PubMedCentralPubMedGoogle Scholar
  45. Lansard M, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism- related gene expression in rainbow trout: role of TOR. Amino Acids 39:801–810PubMedCrossRefGoogle Scholar
  46. Lansard M, Panserat S, Plagnes-Juan E, Dias K, Seiliez I, Skiba-Cassy S (2011) l-leucine, l-methionine, and l-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141:75–80PubMedCrossRefGoogle Scholar
  47. Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G (2005) Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146:3150–3162PubMedCrossRefGoogle Scholar
  48. Librán-Pérez M, Figueiredo-Silva AC, Panserat S, Geurden I, Miguez JM, Polakof S, Soengas JL (2013) Response of hepatic lipid and glucose metabolism to a mixture or single fatty acids: possible presence of fatty acid-sensing mechanisms. Comp Biochem Phys A 164:241–248CrossRefGoogle Scholar
  49. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472PubMedCrossRefGoogle Scholar
  50. Mennigen JA, Panserat S, Larquier M, Plagnes-Juan E, Médale F, Seiliez I, Skiba-Cassy S (2012) Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout. PLoS ONE 7:e38604PubMedCentralPubMedCrossRefGoogle Scholar
  51. Méton I, Mediavilla D, Caseras A, Cantó E, Fernandez F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232PubMedGoogle Scholar
  52. Méton I, Caseras A, Fernandez F, Baanante IV (2004) Molecular cloning of hepatic glucose-6-phosphatase catalytic subunit from gilthead sea bream (Sparus aurata): response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp Biochem Phys B 138:145–153CrossRefGoogle Scholar
  53. Moon T (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Phys B 129:243–249CrossRefGoogle Scholar
  54. Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR (2011) Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br J Nutr 106:1457–1469PubMedCrossRefGoogle Scholar
  55. National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington, DCGoogle Scholar
  56. Oku H, Umino T (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp Biochem Phys B 151:268–277CrossRefGoogle Scholar
  57. Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864PubMedCrossRefGoogle Scholar
  58. Olsvik PA, Lie KK, Jordal A-EO, Nilsen TO, Hordvik II (2004) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21CrossRefGoogle Scholar
  59. Panserat S, Kaushik SJ (2010) Regulation of gene expression by nutritional factors in fish. Aquac Res 41:751–762CrossRefGoogle Scholar
  60. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Reg I 278:R1164–R1170Google Scholar
  61. Panserat S, Capilla E, Gutierrez J, Frappart PO, Vachot C, Plagnes-Juan E, Aguirre P, Brèque J, Kaushik S (2001) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol B 128:275–283PubMedCrossRefGoogle Scholar
  62. Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE (2012) Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiol Biochem 38:1145–1157PubMedCrossRefGoogle Scholar
  63. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218PubMedCrossRefGoogle Scholar
  64. Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045PubMedCrossRefGoogle Scholar
  65. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung Y-L, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236PubMedCentralPubMedCrossRefGoogle Scholar
  66. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Devel 14:2819–2830PubMedCentralPubMedCrossRefGoogle Scholar
  67. Reschly EJ, Ai N, Ekins S, Welsh WJ, Hagey LR, Hofmann AF, Krasowski MD (2008) Evolution of the bile salt nuclear receptor FXR in vertebrates. J Lipid Res 49:1577–1587PubMedCentralPubMedCrossRefGoogle Scholar
  68. Resuehr D, Spiess A-N (2003) A real-time polymerase chain reaction-based evaluation of cDNA synthesis priming methods. Anal Biochem 322:287–291PubMedCrossRefGoogle Scholar
  69. Salgado MC, Méton I, Egea M, Baanante IV (2004) Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. J Mol Endocrinol 33:783–795PubMedCrossRefGoogle Scholar
  70. Sato R (2010) Sterol metabolism and SREBP activation. Arch Biochem Biophys 501:177–181PubMedCrossRefGoogle Scholar
  71. Savkur RS, Bramlett KS, Michael LF, Burris TP (2005) Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem Biophys Res Comm 329:391–396PubMedCrossRefGoogle Scholar
  72. Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutierrez J et al (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Reg I 295:R329–R335Google Scholar
  73. Seiliez I, Panserat S, Lansard M, Polakof S, Plagnes-Juan E, Surget A, Dias K, Larquier M, Kaushik S, Skiba-Cassy S (2011) Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am J Physiol Reg I 300:R733–R743Google Scholar
  74. Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S (2013) Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 10:237–248PubMedCrossRefGoogle Scholar
  75. Skiba-Cassy S, Lansard M, Panserat S, Médale F (2009) Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Reg I 297:R1421–R1429Google Scholar
  76. Srivastava AK, Pandey SK (1998) Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182:135–141PubMedCrossRefGoogle Scholar
  77. Tsai M-L, Chen H-Y, Tseng M-C, Chang R-C (2008) Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425:69–78PubMedCrossRefGoogle Scholar
  78. Viegas I, Rito J, Jarak I, Leston S, Carvalho R, Metón I, Pardal M, Baanante I, Jones J (2012) Hepatic glycogen synthesis in farmed European seabass (Dicentrarchus labrax L.) is dominated by indirect pathway fluxes. Comp Biochem Physiol A 163:22–29CrossRefGoogle Scholar
  79. Wullschleger SS, Loewith RR, Hall MM (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  80. Zhu Y, Li F, Guo GL (2011) Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res 63:259–265PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nicholas M. Wade
    • 1
    Email author
  • Sandrine Skiba-Cassy
    • 2
  • Karine Dias
    • 2
  • Brett D. Glencross
    • 1
  1. 1.Division of Marine and Atmospheric Research, Ecosciences PrecinctCSIRO Food Futures FlagshipDutton ParkAustralia
  2. 2.UR1067 Nutrition, Métabolisme, Aquaculture, Pôle d’hydrobiologieINRASaint-Pée-sur-NivelleFrance

Personalised recommendations