Advertisement

Fish Physiology and Biochemistry

, Volume 39, Issue 5, pp 1267–1276 | Cite as

Liver proteomic analysis of the large yellow croaker (Pseudosciaena crocea) following polyriboinosinic:polyribocytidylic acid induction

  • Yinnan Mu
  • Xiang Wan
  • Kebing Lin
  • Jingqun AoEmail author
  • Xinhua ChenEmail author
Article

Abstract

In the present study, we examined the liver protein profiles of the large yellow croaker (Pseudosciaena crocea) exposed to polyriboinosinic:polyribocytidylic acid [poly(I:C)], a viral mimic, using the differential proteomic approach. Sixteen altered protein spots were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry or matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry, including eight upregulated proteins and eight downregulated proteins. These altered host proteins were classified into six categories based on their biological function: cellular process, metabolic process, biological regulation, binding, and catabolic process, highlighting the fact that response to poly(I:C) induction in fish seems to be complex and diverse. Moreover, four corresponding genes of the differentially expressed proteins were validated by relative quantitative real-time PCR. Western blot analysis further demonstrated the changes in protein abundance of natural killer enhancing factor and peroxiredoxin 6. These results will be helpful in furthering our understanding of the changes of physiological processes in liver of fish during virus infection.

Keywords

Large yellow croaker (pseudosciaena croceaLiver Proteomics Poly(I:C) 

Notes

Acknowledgments

The work was supported by grants from National Natural Science Foundation of China (31125027 and 31001131), the National Basic Research Program of China (2012CB114402), and the Nation ‘863’ Project of China (2012AA092202). We thank Mr. Xinwen Zhou (Fudan University, China) for help with MALDI-TOF/TOF mass spectrometry.

References

  1. Ao J, Chen X (2006) Identification and characterization of a novel gene encoding an RGD-containing protein in large yellow croaker iridovirus. Virology 355(2):213–222. doi: 10.1016/j.virol.2006.07.004 PubMedCrossRefGoogle Scholar
  2. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297(5585):1301–1310. doi: 10.1126/science PubMedCrossRefGoogle Scholar
  3. Booy AT, Haddow JD, Ohlund LB, Hardie DB, Olafson RW (2005) Application of isotope coded affinity tag (ICAT) analysis for the identification of differentially expressed proteins following infection of atlantic salmon (Salmo salar) with infectious hematopoietic necrosis virus (IHNV) or Renibacterium salmoninarum (BKD). J Proteome Res 4(2):325–334. doi: 10.1021/pr049840t PubMedCrossRefGoogle Scholar
  4. Chen XH, Lin KB, Wang XW (2003) Outbreaks of an iridovirus disease in maricultured large yellow croaker, Larimichthys crocea (Richardson), in China. J Fish Dis 26(10):615–619PubMedCrossRefGoogle Scholar
  5. Chen TY, Shiau CY, Wei CI, Hwang DF (2004) Preliminary study on puffer fish proteome-species identification of puffer fish by two-dimensional electrophoresis. J Agric Food Chem 52(8):2236–2241. doi: 10.1021/jf035033n PubMedCrossRefGoogle Scholar
  6. Chen Y, Zang YX, Fan TJ, Meng L, Ren GC, Chen SL (2006) Molecular identification and expression analysis of the natural killer cell enhancing factor (NKEF) gene from turbot (Scophthalmus maximus). Aquaculture 216:1186–1193. doi: 10.1016/j.aquaculture.2006.09.034 CrossRefGoogle Scholar
  7. Chen J, Wu HQ, Niu H, Shi YH, Li MY (2009) Increased liver protein and mRNA expression of natural killer cell-enhancing factor B (NKEF-B) in ayu (Plecoglossus altivelis) after Aeromonas hydrophila infection. Fish Shellfish Immunol 26(3):567–571PubMedCrossRefGoogle Scholar
  8. Chen X, Wu Z, Yu S, Wang S, Peng X (2010) Beta2-microglobulin is involved in the immune response of large yellow croaker to Aeromonas hydrophila: a proteomic based study. Fish Shellfish Immunol 28(1):151–158. doi: 10.1016/j.fsi.2009.10.015 PubMedCrossRefGoogle Scholar
  9. Demoulins T, Baron ML, Kettaf N, Abdallah A, Sharif-Askari E, Sekaly RP (2009) Poly (I:C) induced immune response in lymphoid tissues involves three sequential waves of type I IFN expression. Virology 386(2):225–236. doi: 10.1016/j.virol.2009.01.024 PubMedCrossRefGoogle Scholar
  10. Fernandez-Trujillo A, Ferro P, Garcia-Rosado E, Infante C, Alonso MC, Bejar J, Borrego JJ, Manchado M (2008) Poly I:C induces Mx transcription and promotes an antiviral state against sole aquabirnavirus in the flatfish Senegalese sole (Solea senegalensis Kaup). Fish Shellfish Immunol 24(3):279–285. doi: 10.1016/j.fsi.2007.11.008 PubMedCrossRefGoogle Scholar
  11. Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23(4):149–169. doi: 10.1016/j.bioeng.2006.05.020 PubMedCrossRefGoogle Scholar
  12. Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736. doi: 10.1002/hep.22034 PubMedCrossRefGoogle Scholar
  13. Gardiner F, Gaynor P, Phelan SA (2010) Induction of Prdx1 and Prdx6 in Liver Cells by Serum and TPA. Int J Biol 2(1):3–12Google Scholar
  14. Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383(3–4):347–364. doi: 10.1515/BC.2002.040 PubMedGoogle Scholar
  15. Hogstrand C, Balesaria S, Glover CN (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comp Biochem Physiol B: Biochem Mol Biol 133(4):523–535. doi: S1096495902001252 CrossRefGoogle Scholar
  16. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447 (7145):714-719. doi: 10.1038/nature05846 Google Scholar
  17. Lee C, Kramer G, Graham DE, Appling DR (2007) Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. J Biol Chem 282(38):27744–27753. doi: 10.1074/jbc.M704572200 PubMedCrossRefGoogle Scholar
  18. Li Z, Diehl AM (2003) Innate immunity in the liver. Curr Opin Gastroenterol 19(6):565–571. doi: 00001574-200311000-00009 PubMedCrossRefGoogle Scholar
  19. Liu G, Zhang J, Chen X (2007) Molecular and functional characterization of a CD59 analogue from large yellow croaker Pseudosciana crocea. Mol Immunol 44(15):3661–3671. doi: 10.1016/j.molimm.2007.04.006 PubMedCrossRefGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262S1046-2023(01)91262-9 PubMedCrossRefGoogle Scholar
  21. Maguire D, Shah J, McCabe M (2006) Assaying ATP synthase rotor activity. Adv Exp Med Biol 578:67–72. doi: 10.1007/0-387-29540-2_11 PubMedCrossRefGoogle Scholar
  22. Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8(11–12):1997–2006. doi: 10.1089/ars.2006.8.1997 PubMedCrossRefGoogle Scholar
  23. Morzel M, Verrez-Bagnis V, Arendt EK, Fleurence J (2000) Use of two-dimensional electrophoresis to evaluate proteolysis in salmon (Salmo salar) muscle as affected by a lactic fermentation. J Agric Food Chem 48(2):239–244. doi: jf990499k PubMedCrossRefGoogle Scholar
  24. Noronkoski T, Stoineva IB, Ivanov IP, Petkov DD, Mononen I (1998) Glycosylasparaginase-catalyzed synthesis and hydrolysis of beta-aspartyl peptides. J Biol Chem 273(41):26295–26297PubMedCrossRefGoogle Scholar
  25. Plant KP, Harbottle H, Thune RL (2005) Poly I:C induces an antiviral state against Ictalurid Herpesvirus 1 and Mx1 transcription in the channel catfish (Ictalurus punctatus). Dev Comp Immunol 29(7):627–635. doi: 10.1016/j.dci.2004.09.008 PubMedCrossRefGoogle Scholar
  26. Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43(2 Suppl 1):S54–S62. doi: 10.1002/hep.21060 PubMedCrossRefGoogle Scholar
  27. Ratnam S, Wijekoon EP, Hall B, Garrow TA, Brosnan ME, Brosnan JT (2006) Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver. Am J Physiol Endocrinol Metab 290(5):E933–E939. doi: 10.1152/ajpendo.00498.2005 PubMedCrossRefGoogle Scholar
  28. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52(1–2):35–41. doi: 10.1080/15216540252774748 PubMedCrossRefGoogle Scholar
  29. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38(12):1543–1552. doi: 10.1016/j.freeradbiomed.2005.02.026 PubMedCrossRefGoogle Scholar
  30. Rise ML, Hall J, Rise M, Hori T, Gamperl AK, Kimball J, Hubert S, Bowman S, Johnson SC (2008) Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Dev Comp Immunol 32(8):916–931. doi: 10.1016/j.dci.2008.01.002 PubMedCrossRefGoogle Scholar
  31. Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS, Lim SJ, Park JG (2005) Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 65(8):3162–3170. doi: 10.1158/0008-5472.CAN-04-3300 PubMedGoogle Scholar
  32. Simeone M, Phelan SA (2005) Transcripts associated with Prdx6 (peroxiredoxin 6) and related genes in mouse. Mamm Genome 16(2):103–111PubMedCrossRefGoogle Scholar
  33. Wang M, Wang Y, Wang J, Lin L, Hong H, Wang D (2011) Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. Aquat Toxicol 103(3–4):129–139. doi: 10.1016/j.aquatox.2011.02.020 PubMedCrossRefGoogle Scholar
  34. Xiong XP, Dong CF, Xu X, Weng SP, Liu ZY, He JG (2011) Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus. Dev Comp Immunol 35(4):431–440. doi: 10.1016/j.dci.2010.11.006 PubMedCrossRefGoogle Scholar
  35. Xu C, Zhang X, Yu C, Lu G, Chen S, Xu L, Ding W, Shi Q, Li Y (2009) Proteomic analysis of hepatic ischemia/reperfusion injury and ischemic preconditioning in mice revealed the protective role of ATP5beta. Proteomics 9(2):409–419. doi: 10.1002/pmic.200800393 PubMedCrossRefGoogle Scholar
  36. Yu S, Ao J, Chen X (2010a) Molecular characterization and expression analysis of MHC class II alpha and beta genes in large yellow croaker (Pseudosciaena crocea). Mol Biol Rep 37(3):1295–1307. doi: 10.1007/s11033-009-9504-8 PubMedCrossRefGoogle Scholar
  37. Yu S, Mu Y, Ao J, Chen X (2010b) Peroxiredoxin IV regulates pro-inflammatory responses in large yellow croaker (Pseudosciaena crocea) and protects against bacterial challenge. J Proteome Res 9(3):1424–1436. doi: 10.1021/pr900961x PubMedCrossRefGoogle Scholar
  38. Zheng W, Liu G, Ao J, Chen X (2006) Expression analysis of immune-relevant genes in the spleen of large yellow croaker (Pseudosciaena crocea) stimulated with poly I:C. Fish Shellfish Immunol 21(4):414–430. doi: 10.1016/j.fsi.2006.01.006 PubMedCrossRefGoogle Scholar
  39. Zheng WJ, Hu YH, Zhang M, Sun L (2010) Analysis of the expression and antioxidative property of a peroxiredoxin 6 from Scophthalmus maximus. Fish Shellfish Immunol 29(2):305–311. doi: 10.1016/j.fsi.2010.04.008 PubMedCrossRefGoogle Scholar
  40. Zheng SQ, Li YX, Zhang Y, Li X, Tang H (2011) MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 89(3):219–226. doi: 10.1016/j.antiviral.2011.01.008 PubMedCrossRefGoogle Scholar
  41. Zhou P, Zhang Z, Wang Y, Zou Z, Xie F (2010) EST analysis and identification of gonad-related genes from the normalized cDNA library of large yellow croaker, Larimichthys crocea. Comp Biochem Physiol Part D Genomics Proteomics 5(2):89–97. doi: 10.1016/j.cbd.2010.01.002 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyState Oceanic AdministrationXiamenPeople’s Republic of China
  2. 2.Fujian Fisheries Research InstituteXiamenPeople’s Republic of China

Personalised recommendations