Advertisement

Fish Physiology and Biochemistry

, Volume 39, Issue 5, pp 1223–1238 | Cite as

Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae

  • Dulce Alves MartinsEmail author
  • Filipa Rocha
  • Filipa Castanheira
  • Ana Mendes
  • Pedro Pousão-Ferreira
  • Narcisa Bandarra
  • Joana Coutinho
  • Sofia Morais
  • Manuel Yúfera
  • Luís E. C. Conceição
  • Gonzalo Martínez-Rodríguez
Article

Abstract

Dietary fatty acids, particularly arachidonic acid (ARA), affect cortisol and may influence the expression of genes involved in stress response in fish. The involvement of ARA on stress, lipid, and eicosanoid metabolism genes, in Senegalese sole, was tested. Post-larvae were fed Artemia presenting graded ARA levels (0.1, 0.4, 0.8, 1.7, and 2.3 %, dry matter basis), from 22 to 35 days after hatch. Whole-body cortisol levels were determined, before and 3 h after a 2 min air exposure, as well as the expression of phospholipase A2 (PLA 2 ), cyclooxygenase-2 (COX-2), steroidogenic acute regulatory protein (StAR), glucocorticoid receptors (GRs), phosphoenolpyruvate carboxykinase (PEPCK), and peroxisome proliferator-activated receptor alpha (PPARα). Relative growth rate (6.0–7.8 % day−1) and survival at the end of the experiment (91–96 %) and after stress (100 %) were unaffected. Fish reflected dietary ARA content and post-stress cortisol increased with ARA supply up to 1.7 %, whereas 2.3 % ARA seemed to enhance basal cortisol slightly and alter the response to stress. Results suggested that elevating StAR transcription might not be necessary for a short-term response to acute stress. Basal cortisol and PLA 2 expression were strongly correlated, indicating a potential role for this enzyme in steroidogenesis. Under basal conditions, larval ARA was associated with GR1 expression, whereas the glucocorticoid responsive gene PEPCK was strongly related with cortisol but not GR1 mRNA levels, suggesting the latter might not reflect the amount of GR1 protein in sole. Furthermore, a possible role for PPARα in the expression of PEPCK following acute stress is proposed.

Keywords

Arachidonic acid Cortisol Stress Glucocorticoid receptors Senegalese sole 

Abbreviations

LC-PUFA

Long-chain polyunsaturated fatty acids

SAFA

Saturated fatty acids

MUFA

Monounsaturated fatty acids

ARA

Arachidonic acid

EPA

Eicosapentaenoic acid

DHA

Docosahexaenoic acid

HPI

Hypothalamus–pituitary–interrenal

PLA2

Phospholipase A2

COX-2

Cyclooxygenase-2

PPARα

Peroxisome proliferator-activated receptor alpha

StAR

Steroidogenic acute regulatory protein

GR

Glucocorticoid receptor

PEPCK

Phosphoenolpyruvate carboxykinase

RGR

Relative growth rate

Notes

Acknowledgments

This study was funded by “Fundação para a Ciência e a Tecnologia” (FCT, Portugal; PTDC/MAR/67017/2006), “Consolider—Ingenio 2010” programme (Plan Nacional I + D+I + FEDER, Spain; CSD2007-00002), MCYT + FEDER (Plan Nacional I + D+I, Spain; AGL2007-64450-C02-01), POCTEP Programme (0251-ECOAQUA-5-E). This research also benefited from the grants SFRH/BPD/32469/2006 (FCT, Portugal) and COST-STSM-FA0801-5429 (LARVANET).

Conflict of interest

D. Alves Martins, G. Martínez-Rodríguez, F. Rocha, F. Castanheira, A. Mendes, P. Pousão-Ferreira, N. Bandarra, J. Coutinho, S. Morais, M. Yúfera, L.E.C. Conceição ensure the integrity of the work and none have conflicts of interest to the subject of the manuscript. D.A.M., S.M. and L.E.C.C. designed the research; D.A.M., S.M. and F.C. formulated and manufactured the diets; A.M., P.P.F., D.A.M., F.C., F.R., G.M.R., N.B. and J.C. conducted the experiment; P.P.F., M.Y., and L.E.C.C. provided essential reagents or materials; D.A.M. and F.R. performed the statistical analysis; D.A.M., G.M.R., S.M., M.Y., and L.E.C.C. contributed for manuscript writing; D.A.M. had primary responsibility for the final content. All authors have read and approved the final manuscript.

References

  1. Aluru N, Vijayan MM (2007) Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol Genomics 31(3):483–491PubMedCrossRefGoogle Scholar
  2. Aluru N, Vijayan MM (2009) Stress transcriptomics in fish: A role for genomic cortisol signaling. Gen Comp Endocrinol 164 (2–3, Sp. Iss. SI):142–150Google Scholar
  3. Alves Martins D, Engrola S, Morais S, Bandarra N, Coutinho J, Yúfera M, Conceição LEC (2011a) Cortisol response to air exposure in Solea senegalensis post-larvae is affected by dietary arachidonic acid-to-eicosapentaenoic acid ratio. Fish Physiol Biochem 37(4):733–743CrossRefGoogle Scholar
  4. Alves Martins D, Rocha F, Martínez-Rodríguez G, Bell G, Morais S, Castanheira F, Bandarra N, Coutinho J, Yúfera M, Conceição LEC (2011b) Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. Br J Nutr 108:864–874PubMedCrossRefGoogle Scholar
  5. Andersen CY (2002) Possible new mechanism of cortisol action in female reproductive organs: physiological implications of the free hormone hypothesis. J Endocrinol 173:211–217PubMedCrossRefGoogle Scholar
  6. Aragão C, Corte-Real J, Costas B, Dinis MT, Conceição LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup (1858). Amino Acids 34(1):143–148PubMedCrossRefGoogle Scholar
  7. Aragão C, Costas B, Vargas-Chacoff L, Ruiz-Jarabo I, Dinis MT, Mancera JM, Conceição LEC (2010) Changes in plasma amino acid levels in a euryhaline fish exposed to different environmental salinities. Amino Acids 38(1):311–317PubMedCrossRefGoogle Scholar
  8. Barry TP, Unwin MJ, Malison JA, Quinn TP (2001) Free and total cortisol levels in semelparous and iteroparous chinook salmon. J Fish Biol 59(6):1673–1676CrossRefGoogle Scholar
  9. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteriods. Annu Rev Fish Dis 1:3–26CrossRefGoogle Scholar
  10. Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Phys B 83:711–719Google Scholar
  11. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917PubMedCrossRefGoogle Scholar
  12. Brien TG (1980) Free cortisol in human plasma. Horm Metab Res 12:643–650PubMedCrossRefGoogle Scholar
  13. Cassuto H, Aran A, Cohen H, Eisenberger CL, Reshef L (1999) Repression and activation of transcription of phosphoenolpyruvate carboxykinase gene during liver development. FEBS Lett 457(3):441–444PubMedCrossRefGoogle Scholar
  14. Castillo J, Castellana B, Acerete L, Planas JV, Goetz FW, Mackenzie S, Tort L (2008) Stress-induced regulation of steroidogenic acute regulatory protein expression in head kidney of Gilthead seabream (Sparus aurata). J Endocrinol 196(2):313–322PubMedCrossRefGoogle Scholar
  15. Clarke SD (2004) The multi-dimensional regulation of gene expression by fatty acids: polyunsaturated fats as nutrient sensors. Curr Opin Lipidol 15(1):13–18PubMedCrossRefGoogle Scholar
  16. Conceição LEC, Ribeiro L, Engrola S, Aragão C, Morais S, Lacuisse M, Soares F, Dinis MT (2007) Nutritional physiology during development of Senegalese sole (Solea senegalensis). Aquaculture 268(1):64–81CrossRefGoogle Scholar
  17. Costas B, Aragão C, Mancera JM, Dinis MT, Conceição LEC (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquacult Res 39(1):1–9CrossRefGoogle Scholar
  18. Costas B, Aragão C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Dinis MT, Mancera JM, Conceição LEC (2011a) Feed deprivation in Senegalese sole (Solea senegalensis Kaup, 1858) juveniles: effects on blood plasma metabolites and free amino acid levels. Fish Physiol Biochem 37:495–504PubMedCrossRefGoogle Scholar
  19. Costas B, Conceição LEC, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011b) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76CrossRefGoogle Scholar
  20. Dâmaso-Rodrigues ML, Pousão-Ferreira P, Ribeiro L, Coutinho J, Bandarra NM, Gavaia PJ, Narciso L, Morais S (2010) Lack of essential fatty acids in live feed during larval and post larval rearing: effect on the performance of juvenile Solea senegalensis. Aquacult Int 18(5):741–757CrossRefGoogle Scholar
  21. Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 64(5–6):893–901PubMedCrossRefGoogle Scholar
  22. Fast MD, Hosoya S, Johnson SC, Afonso LOB (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immun 24(2):194–204CrossRefGoogle Scholar
  23. Ganga R, Tort L, Acerete L, Montero D, Izquierdo MS (2006) Modulation of ACTH-induced cortisol release by polyunsaturated fatty acids in interrenal cells from gilthead seabream Sparus aurata. J Endocrinol 190(1):39–45PubMedCrossRefGoogle Scholar
  24. Ganga R, Bell JG, Montero D, Atalah E, Vraskou Y, Tort L, Fernandez A, Izquierdo MS (2011) Adrenocorticotrophic hormone-stimulated cortisol release by the head kidney inter-renal tissue from sea bream (Sparus aurata) fed with linseed oil and soyabean oil. Br J Nutr 105(2):238–247PubMedCrossRefGoogle Scholar
  25. Geslin M, Auperin B (2004) Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 135(1):70–80PubMedCrossRefGoogle Scholar
  26. Harel M, Gavasso S, Leshin J, Gubernatis A, Place AR (2001) The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae. Fish Physiol Biochem 24(2):113–123CrossRefGoogle Scholar
  27. Hori TS, Gamperl AK, Hastings CE, Voort GEV, Robinson JAB, Johnson SC, Afonso LOB (2012a) Inter-individual and -family differences in the cortisol responsiveness of Atlantic cod (Gadus morhua). Aquaculture 324–325:165–173CrossRefGoogle Scholar
  28. Hori TS, Rise ML, Johnson SC, Afonso LOB, Gamperl AK (2012b) The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders. Gen Comp Endocrinol 175:311–320PubMedCrossRefGoogle Scholar
  29. Hosoya S, Johnson SC, Iwama GK, Gamperl AK, Afonso LOB (2007) Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comp Biochem Phys A 146:78–86CrossRefGoogle Scholar
  30. Hosoya S, Kaneko T, Suzuki Y, Hino A (2008) Individual variations in behavior and free cortisol responses to acute stress in tiger pufferfish Takifugu rubripes. Fish Sci 74:755–763CrossRefGoogle Scholar
  31. Hughes-Fulford M, Tjandrawinata RR, Li C-F, Sayyah S (2005) Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis 26(9):1520–1526PubMedCrossRefGoogle Scholar
  32. Jia Y, Turek JJ (2005) Altered NF-kappa B gene expression and collagen formation induced by polyunsaturated fatty acids. J Nutr Biochem 16(8):500–506PubMedCrossRefGoogle Scholar
  33. Johansen IB, Sandvik GK, Nilsson GE, Bakken M, Overli O (2011) Cortisol receptor expression differs in the brains of rainbow trout selected for divergent cortisol responses. Comp Biochem Phys D 6(2):126–132Google Scholar
  34. Jump DB, Clarke SD (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90PubMedCrossRefGoogle Scholar
  35. Junzo K, Akiko T, Naoki M, Noriaki K, Koji Y, Shuji H (1987) Modulation of brain progestin and glucocorticoid receptors by unsaturated fatty acid and phospholipid. J Steroid Biochem 27(4–6):641–648CrossRefGoogle Scholar
  36. Kato J (1989) Arachidonic acid as a possible modulator of estrogen, progestin, androgen, and glucocorticoid receptors in the central and peripheral tissues. J Steroid Biochem 34:219–227PubMedCrossRefGoogle Scholar
  37. Koven W, Van Anholt R, Lutzky S, Ben Atia I, Nixon O, Ron B, Tandler A (2003) The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change. Aquaculture 228:307–320CrossRefGoogle Scholar
  38. Kowalewski MP, Dyson MT, Manna PR, Stocco DM (2009) Involvement of peroxisome proliferator-activated receptor gamma in gonadal steroidogenesis and steroidogenic acute regulatory protein expression. Reprod Fertil Dev 21(7):909–922PubMedCrossRefGoogle Scholar
  39. Lee PC, Struve M (1992) Unsaturated fatty acids inhibit glucocorticoid receptor-binding of trout hepatic cytosol. Comp Biochem Phys B 102(4):707–711Google Scholar
  40. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27(1):114–120PubMedGoogle Scholar
  41. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N (1999) Ligand selectivity of the peroxisome proliferator-activated receptor α. Biochemistry (Mosc) 38(1):185–190CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  43. Lund I, Steenfeldt SJ (2011) The effects of dietary long-chain essential fatty acids on growth and stress tolerance in pikeperch larvae (Sander lucioperca L.). Aquacult Nutr 17(2):191–199CrossRefGoogle Scholar
  44. Maule AG, Schreck CB (1991) Stress and cortisol treatment changed affinity and number of glucocorticoid receptors in leukocytes and gill of coho salmon. Gen Comp Endocrinol 84(1):83–93PubMedCrossRefGoogle Scholar
  45. McKenzie DJ (2005) Effects of dietary fatty acids on the physiology of environmental adaptation in fish. In: Starck JM, Wang T (eds) Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers, Enfield, pp 363–388Google Scholar
  46. Meves H (2008) Arachidonic acid and ion channels: an update. Br J Pharmacol 155(1):4–16PubMedCrossRefGoogle Scholar
  47. Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9(3):211–268CrossRefGoogle Scholar
  48. Nematollahi MA, van Pelt-Heerschap H, Komen J (2009) Transcript levels of five enzymes involved in cortisol synthesis and regulation during the stress response in common carp: relationship with cortisol. Gen Comp Endocrinol 164(1):85–90PubMedCrossRefGoogle Scholar
  49. Oxley A, Jolly C, Eide T, Jordal AEO, Svardal A, Olsen RE (2010) The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar). Br J Nutr 103(6):851–861PubMedCrossRefGoogle Scholar
  50. Pavlikova N, Kortner TM, Arukwe A (2010) Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin. Chem-Biol Interact 185:119–127PubMedCrossRefGoogle Scholar
  51. Ranhotra HS, Sharma R (2004) Polyunsaturated fatty acids inhibit mouse hepatic glucocorticoid receptor activation in vitro. Indian J Biochem Biophys 41(5):246–249PubMedGoogle Scholar
  52. Ricker WE (1958) Handbook of computations for biological statistics of fish populations. Can J Fish Aquat Sci 119:1–300Google Scholar
  53. Rosewicz S, McDonald AR, Maddux BA, Goldfine ID, Miesfeld RL, Logsdon CD (1988) Mechanism of glucocorticoid receptor downregulation by glucocorticoids. J Biol Chem 263(6):2581–2584PubMedGoogle Scholar
  54. Salas-Leiton E, Coste O, Asensio E, Infante C, Cañavate JP, Manchado M (2012) Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup 1858). Fish Shellfish Immun 32(5):769–778CrossRefGoogle Scholar
  55. Sathiyaa R, Vijayan MM (2003) Autoregulation of glucocorticoid receptor by cortisol in rainbow trout hepatocytes. Am J Physiol—Cell Ph 284:C1508–C1515CrossRefGoogle Scholar
  56. Schievella AR, Regier MK, Smith WL, Lin LL (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30749–30754PubMedCrossRefGoogle Scholar
  57. Shrimpton JM, Mccormick SD (1999) Responsiveness of gill Na +/K + -ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J Exp Biol 202:987–995PubMedGoogle Scholar
  58. Shrimpton JM, Randall DJ (1994) Downregulation of corticosteroid receptors in gills of coho salmon due to stress and cortisol treatment. Am J Physiol–Reg I 267(2):R432–R438Google Scholar
  59. Silva PIM, Martins CIM, Engrola S, Marino G, Øverli Ø, Conceição LEC (2010) Individual differences in cortisol levels and behaviour of Senegalese sole (Solea senegalensis) juveniles: evidences for coping styles. Appl Anim Behav Sci 124:75–81CrossRefGoogle Scholar
  60. Stocco DM, Wang XJ, Jo Y, Manna PR (2005) Multiple signalling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19(11):2647–2659PubMedCrossRefGoogle Scholar
  61. Striggow F, Ehrlich BE (1997) Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B-4. Biochem Biophys Res Commun 237(2):413–418PubMedCrossRefGoogle Scholar
  62. Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG (2006) Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): effect of seawater exposure and cortisol treatment. Life Sci 78:2329–2335PubMedCrossRefGoogle Scholar
  63. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184CrossRefGoogle Scholar
  64. Vagner M, Santigosa E (2011) Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315:131–143CrossRefGoogle Scholar
  65. Van Anholt RD, Koven WM, Lutzky S, Wendelaar Bonga SE (2004) Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata) larvae. Aquaculture 238:1–4CrossRefGoogle Scholar
  66. Van Anholt RD, Spanings FAT, Nixon O, Wendelaar Bonga SE, Koven WM (2012) The effects of arachidonic acid on the endocrine and osmoregulatory response of tilapia (Oreochromis mossambicus) acclimated to seawater and subjected to confinement stress. Fish Physiol Biochem 38(3):703–713PubMedCrossRefGoogle Scholar
  67. Vijayan MM, Raptis S, Sathiyaa R (2003) Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. Gen Comp Endocrinol 132(2):256–263. doi: 10.1016/s0016-6480(03)00092-3 PubMedCrossRefGoogle Scholar
  68. Villalta M, Estévez A, Bransden MP (2005a) Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture 245:193–209CrossRefGoogle Scholar
  69. Villalta M, Estévez A, Bransden MP, Bell JG (2005b) The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture 249:353–365CrossRefGoogle Scholar
  70. Villalta M, Estévez A, Bransden MP, Bell JG (2008a) Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis). Aquacult Nutr 14:120–128CrossRefGoogle Scholar
  71. Villalta M, Estévez A, Bransden MP, Bell JG (2008b) Effects of dietary eicosapentaenoic acid on growth, survival, pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquacult Nutr 14(3):232–241CrossRefGoogle Scholar
  72. Wales NAM (1988) Hormone studies in Myxine glutinosa—effects of the eicosanoids arachidonic-acid, prostaglandin-E1, prostaglandin-E2, prostaglandin-A2, prostaglandin-F2, thromboxane B2 and of indomethacin on plasma cortisol, blood pressure, urine flow and electrolyte balance. J Comp Physiol B 158(5):621–626PubMedCrossRefGoogle Scholar
  73. Wang XJ, Walsh LP, Reinhart AJ, Stocco DM (2000) The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem 275(26):20204–20209PubMedCrossRefGoogle Scholar
  74. Wang XJ, Dyson MT, Jo Y, Eubank DW, Stocco DA (2003a) Involvement of 5-lipoxygenase metabolites of arachidonic acid in cyclic AMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Steroid Biochem Mol Biol 85(2–5):159–166PubMedCrossRefGoogle Scholar
  75. Wang XJ, Dyson MT, Jo Y, Stocco DM (2003b) Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology 144(8):3368–3375PubMedCrossRefGoogle Scholar
  76. Wang XJ, Shen CL, Dyson MT, Yin XL, Schiffer RB, Grammas P, Stocco DM (2006) The involvement of epoxygenase metabolites of arachidonic acid in cAMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Endocrinol 190(3):871–878PubMedCrossRefGoogle Scholar
  77. Weirich CR, Reigh RC (2001) Dietary Lipids and Stress Tolerance of Larval Fish. Food Products Press, Binghamton NYGoogle Scholar
  78. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625PubMedGoogle Scholar
  79. Yoshida K, Shinohara H, Haneji T, Nagata T (2007) Arachidonic acid inhibits osteoblast differentiation through cytosolic phospholipase A2-dependent pathway. Oral Dis 13(1):32–39PubMedCrossRefGoogle Scholar
  80. Yudt MR, Cidlowski JA (2002) The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16(8):1719–1726PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dulce Alves Martins
    • 1
    • 2
    Email author
  • Filipa Rocha
    • 1
  • Filipa Castanheira
    • 1
  • Ana Mendes
    • 4
  • Pedro Pousão-Ferreira
    • 4
  • Narcisa Bandarra
    • 3
  • Joana Coutinho
    • 3
  • Sofia Morais
    • 5
  • Manuel Yúfera
    • 2
  • Luís E. C. Conceição
    • 1
  • Gonzalo Martínez-Rodríguez
    • 2
  1. 1.Centro de Ciências do Mar do AlgarveUniversidade do AlgarveFaroPortugal
  2. 2.Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC)Puerto RealSpain
  3. 3.Instituto Nacional de Recursos Biológicos, Instituto de Investigação das Pescas e do Mar (INRB/IPIMAR)LisbonPortugal
  4. 4.IPIMAR/CRIPSulOlhãoPortugal
  5. 5.Centre de Sant Carles de la RápitaIRTATarragonaSpain

Personalised recommendations