Fish Physiology and Biochemistry

, Volume 39, Issue 4, pp 895–905 | Cite as

Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae

  • Koji Murashita
  • Hirofumi Furuita
  • Hiroyuki Matsunari
  • Takeshi Yamamoto
  • Masahiko Awaji
  • Kazuharu Nomura
  • Jiro Nagao
  • Hideki Tanaka


The pancreatic digestive enzymes, trypsin, chymotrypsin, lipase and amylase were partially characterized, and changes in their activities were examined during the initial ontogeny of Japanese eel Anguilla japonica larvae from 5 to 34 days post-hatching (dph). The pH optima of the eel larval enzymes were narrower than those other fish species; trypsin activity was highest at pH 9, chymotrypsin and amylase activities were highest at pH 7 and 8, and lipase activity was highest at pH 8 and 9. In an analysis of thermal profiles, the larval pancreatic enzymes had a high optimal temperature and high thermal stability, which are typical of fish from the tropics. At 12 and 13 dph, lipase activity and gene expression levels of trypsin (-a and -b), lipase and amylase decreased markedly, suggesting a marked change in larval metabolism at that time. These data could be useful in the development of artificial larval diets in Japanese eel.


Japanese eel Larvae Pancreatic digestive enzymes Activity Gene expression 



We are grateful to Dr. Y. Masuda, Mr. H. Imaizumi, Mr. T. Jinbo (Sibushi Laboratory, NRIA) and Mr. H. Hashimoto (Yaeyama Laboratory, Seikai National Fisheries Research Institute) for providing the Japanese eel larvae. This study was supported by a grant-in-aid for “Development of Sustainable Aquaculture Technology Independent of Wild Fishery Resources” from the Ministry of Agriculture, Forestry and Fisheries, Government of Japan.


  1. Albro PW, Hall RD, Corbett JT, Schroeder J (1985) Activation of nonspecific lipase (EC 3.1.1.-) by bile salts. Biochim Biophys Acta 835:477–490CrossRefPubMedGoogle Scholar
  2. Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin D, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93Google Scholar
  3. Borlongan IG (1990) Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89:315–325CrossRefGoogle Scholar
  4. Cao M, Osatomi K, Suzuki M, Hara K, Tachibana K, Ishihara T (2000) Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci 66:1172–1179CrossRefGoogle Scholar
  5. Caruso G, Genovese L, Micale V, Spedicato MT, Mancuso M (2001) Preliminary investigation of the digestive enzymes in Pagellus erythrinus (Linneo 1758) larvae. Mar Fresh Behav Physiol 34:265–268CrossRefGoogle Scholar
  6. Castillo-Yáñez FJ, Pacheco-Aguilar R, Lugo-Sanchez ME, Garcia-Sanchez G, Quintero-Reyes IE (2009) Biochemical characterization of an isoform of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea), and comparison with bovine chymotrypsin. Food Chem 112:634–639CrossRefGoogle Scholar
  7. Chen B, Qin J, Kumar M, Hutchinson W, Clarke S (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 260:264–271CrossRefGoogle Scholar
  8. Chiu S, Pan B (2002) Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with floating feed. Aquaculture 205:141–156CrossRefGoogle Scholar
  9. Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M, Martínez-Rodríguez G (2006) Characterization of a partial alpha-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol B 143:209–218CrossRefPubMedGoogle Scholar
  10. de la Parra AM, Rosas A, Lazo JP, Viana MT (2007) Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33:223–231CrossRefGoogle Scholar
  11. Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278CrossRefPubMedGoogle Scholar
  12. Galaviz M, Garcia-Gasca A, Drawbridge M, Alvarez-Gonzalez C, Lopez L (2011) Ontogeny of the digestive tract and enzymatic activity in white seabass, Atractoscion nobilis, larvae. Aquaculture 318:162–168CrossRefGoogle Scholar
  13. García-Gasca A, Galaviz M, Gutierréz J, García-Ortega A (2006) Development of the digestive tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides annulatus. Aquaculture 251:366–376CrossRefGoogle Scholar
  14. Geiger R (1986) Chymotrypsin. VCH, WeinheimGoogle Scholar
  15. Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta 1124:123–134CrossRefPubMedGoogle Scholar
  16. He T, Xiao Z, Liu Q, Ma D, Xu S, Xiao Y, Li J (2012) Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol Biochem 38:297–308CrossRefPubMedGoogle Scholar
  17. Heu MS, Kim HR, Pyeun JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp Biochem Physiol B 112:557–567CrossRefPubMedGoogle Scholar
  18. Jimenez-Martinez LD, Alvarez-González CA, Tovar-Ramírez D, Gaxiola G, Sanchez-Zamora A, Moyano FJ, Alarcón FJ, Márquez-Couturier G, Gisbert E, Contreras-Sánchez WM, Perales-García N, Arias-Rodríguez L, Indy JR, Páramo-Delgadillo S, Palomino-Albarrán IG (2012) Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). Fish Physiol Biochem 38:441–454CrossRefPubMedGoogle Scholar
  19. Kagawa H, Tanaka H, Ohta H, Okuzawa K, Iinuma N (1997) Induced ovulation by injection of 17,20 beta-dihydroxy-4-pregnen-3-one in the artificially matured Japanese eel, with special reference to ovulation time. Fish Sci 63:365–367Google Scholar
  20. Kagawa H, Sakurai Y, Horiuchi R, Kazeto Y, Gen K, Imaizumi H, Masuda Y (2012) Mechanism of oocyte maturation and ovulation and its application to seed production in the Japanese eel. Fish Physiol Biochem. doi: 10.1007/s10695-012-9607-3 PubMedGoogle Scholar
  21. Kanno G, Yamaguchi T, Kishimura H, Yamaha E, Saeki H (2010) Purification and characteristics of trypsin from masu salmon (Oncorhynchus masou) cultured in fresh-water. Fish Physiol Biochem 36:637–645CrossRefPubMedGoogle Scholar
  22. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2006a) Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 97:65–70CrossRefGoogle Scholar
  23. Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006b) Comparative study of enzymatic characteristics of trypsins from the pyloric ceca of yellow tail (Seriola quinqueradiata) and brown hakeling (Physiculus japonicus). J Food Biochem 30:521–534CrossRefGoogle Scholar
  24. Kishimura H, Tokuda Y, Yabe M, Klomklao S, Benjakul S, Ando S (2007) Trypsins from the pyloric ceca of jacopever (Sebastes schlegelii) and elkhorn sculpin (Alcichthys alcicornis): Isolation and characterization. Food Chem 100:1490–1495CrossRefGoogle Scholar
  25. Kishimura H, Klomklao S, Benjakul S, Chun B (2008) Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem 106:194–199CrossRefGoogle Scholar
  26. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2006a) Purification and characterization of trypsin from the spleen of tongol tuna (Thunnus tonggol). J Agric Food Chem 54:5617–5622CrossRefPubMedGoogle Scholar
  27. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H (2006b) Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol B 144:47–56CrossRefPubMedGoogle Scholar
  28. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix). Comp Biochem Physiol B 148:382–389CrossRefPubMedGoogle Scholar
  29. Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201CrossRefGoogle Scholar
  30. Kortner TM, Overrein I, Oie G, Kjørsvik E, Bardal T, Wold PA, Arukwe A (2011) Molecular ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol A 160:190–199CrossRefGoogle Scholar
  31. Kristjánsson MM, Nielsen HH (1992) Purification and characterization of two chymotrypsin-like proteases from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B 101:247–253PubMedGoogle Scholar
  32. Kurokawa T, Kagawa H, Ohta H, Tanaka H, Okuzawa K, Hirose K (1995) Development of digestive organs and feeding ability in larvae of Japanese eel (Anguilla japonica). Can J Fish Aquat Sci 52:1030–1036CrossRefGoogle Scholar
  33. Kurokawa T, Suzuki T, Ohta H, Kagawa H, Tanaka H, Unuma T (2002) Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica. Fish Sci 68:736–744CrossRefGoogle Scholar
  34. Kurokawa T, Koshio M, Kaiya H, Hashimoto H, Nomura K, Uji S, Awaji M, Gen K, Tanaka H (2011) Distribution of pepsinogen- and ghrelin-producing cells in the digestive tract of Japanese eel (Anguilla japonica) during metamorphosis and the adult stage. Gen Comp Endocrinol 173:475–482CrossRefPubMedGoogle Scholar
  35. Lazo J, Holt G, Arnold C (2000) Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquac Nutr 6:183–192CrossRefGoogle Scholar
  36. Lazo J, Mendoza R, Holt G, Aguilera C, Arnold C (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205CrossRefGoogle Scholar
  37. Liu Z, Wang Z, Xu S, Xu L (2007) Two trypsin isoforms from the intestine of the grass carp (Ctenopharyngodon idellus). J Comp Physiol B 177:655–666CrossRefPubMedGoogle Scholar
  38. Lu B, Zhou L, Cai Q, Hara K, Maeda A, Su W, Cao M (2008) Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chem 110:352–360CrossRefGoogle Scholar
  39. Miura C, Ohta T, Ozaki Y, Tanaka H, Miura T (2009) Trypsin is a multifunctional factor in spermatogenesis. Proc Natl Acad Sci USA 106:20972–20977CrossRefPubMedGoogle Scholar
  40. Moyano F, Díaz M, Alarcón F, Sarasquete M (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130CrossRefGoogle Scholar
  41. Natalia Y, Hashim R, Ali A, Chong A (2004) Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233:305–320CrossRefGoogle Scholar
  42. Nolasco H, Moyano-López F, Vega-Villasante F (2011) Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem 37:43–52CrossRefPubMedGoogle Scholar
  43. Ohta H, Kagawa H, Tanaka H, Okuzawa K, Hirose K (1996) Milt production in the Japanese eel Anguilla japonica induced by repeated injections of human chorionic gonadotropin. Fish Sci 62:44–49Google Scholar
  44. Ohta H, Kagawa H, Tanaka H, Okuzawa K, Iinuma N, Hirose K (1997) Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol Biochem 17:163–169CrossRefGoogle Scholar
  45. Oozeki Y, Bailey K (1995) Ontogenetic development of digestive enzyme-activities in larval walleye pollock, Theragra chalcogramma. Mar Biol 122:177–186Google Scholar
  46. Ozaki Y, Tanaka H, Kagawa H, Ohta H, Adachi S, Yamauchi K (2006) Fine structure and differentiation of the alimentary canal in captive-bred Japanese eel Anguilla japonica preleptocephali. Fish Sci 72:13–19CrossRefGoogle Scholar
  47. Pedersen B, Ueberschär B, Kurokawa T (2003) Digestive response and rates of growth in pre-leptocephalus larvae of the Japanese eel Anguilla japonica reared on artificial diets. Aquaculture 215:321–338CrossRefGoogle Scholar
  48. Perez-Casanova J, Murray H, Gallant J, Ross N, Douglas S, Johnson S (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401CrossRefGoogle Scholar
  49. Raae AJ, Walther BT (1989) Purification and characterization of chymotrypsin, trypsin and elastase like proteinases from cod (Gadus morhua L.). Comp Biochem Physiol B 93:317–324PubMedGoogle Scholar
  50. Rønnestad I, Kamisaka Y, Conceição L, Morais S, Tonheim S (2007) Digestive physiology of marine fish larvae: Hormonal control and processing capacity for proteins, peptides and amino acids. Aquaculture 268:82–97CrossRefGoogle Scholar
  51. Sæle Ø, Nordgreen A, Olsvik PA, Hamre K (2010) Characterization and expression of digestive neutral lipases during ontogeny of Atlantic cod (Gadus morhua). Comp Biochem Physiol A 157:252–259CrossRefGoogle Scholar
  52. Smichi N, Fendri A, Chaâbouni R, Ben Rebah F, Gargouri Y, Miled N (2010) Purification and biochemical characterization of an acid-stable lipase from the pyloric caeca of sardine (Sardinella aurita). Appl Biochem Biotechnol 162:1483–1496CrossRefPubMedGoogle Scholar
  53. Srivastava AS, Kurokawa T, Suzuki T (2002) mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol A 132:629–635CrossRefGoogle Scholar
  54. Stevens ED, McLeese JM (1984) Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Am J Physiol 246:R487–R494PubMedGoogle Scholar
  55. Tanaka H, Kagawa H, Ohta H (2001) Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201:51–60CrossRefGoogle Scholar
  56. Tanaka H, Kagawa H, Ohta H, Unuma T, Nomura K (2003) The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol Biochem 28:493–497CrossRefGoogle Scholar
  57. Tsukamoto K, Chow S, Otake T, Kurogi H, Mochioka N, Miller MJ, Aoyama J, Kimura S, Watanabe S, Yoshinaga T, Shinoda A, Kuroki M, Oya M, Watanabe T, Hata K, Ijiri S, Kazeto Y, Nomura K, Tanaka H (2011) Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat Commun 2:179CrossRefPubMedGoogle Scholar
  58. Yang F, Su W, Lu B, Wu T, Sun L, Hara K, Cao M (2009) Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem 116:860–866CrossRefGoogle Scholar
  59. Yoshinaka R, Sato M, Suzuki T, Ikeda S (1985) Purification and some properties of two anionic trypsins from the eel (Anguilla japonica). Comp Biochem Physiol B 80:5–9CrossRefPubMedGoogle Scholar
  60. Zhou LZ, Ruan MM, Cai QF, Liu GM, Sun LC, Su WJ, Cao MJ (2012) Purification, characterization and cDNA cloning of a trypsin from the hepatopancreas of snakehead (Channa argus). Comp Biochem Physiol B 161:247–254CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Koji Murashita
    • 1
  • Hirofumi Furuita
    • 1
  • Hiroyuki Matsunari
    • 1
  • Takeshi Yamamoto
    • 1
  • Masahiko Awaji
    • 1
  • Kazuharu Nomura
    • 1
  • Jiro Nagao
    • 1
  • Hideki Tanaka
    • 1
  1. 1.National Research Institute of AquacultureFisheries Research AgencyTamaki, MieJapan

Personalised recommendations