Fish Physiology and Biochemistry

, Volume 38, Issue 6, pp 1619–1626 | Cite as

Cortisol is responsible for positive and negative effects in the ovarian maturation induced by the exposure to acute stressors in Nile tilapia, Oreochromis niloticus

  • Vincent Gennotte
  • Philippe Sawadogo
  • Sylvain Milla
  • Patrick Kestemont
  • Charles Mélard
  • Carole Rougeot


The aim of the present study was to evaluate the effect of acute stress and cortisol injection on oocyte final maturation process in female Nile tilapia (Oreochromis niloticus). Handling followed by a prophylactic treatment (0.3 mL L−1 H2O2, 5 g L−1 NaCl solution during 30 min) and an environmental change (transfer from a 2 m3 fibreglass square tank to 50 L aquaria) were used as acute stressors and compared to a single cortisol injection (0.5 or 5 mg kg−1 body weight). For both acute stress and cortisol injection (0.5 mg kg−1 body weight), serum cortisol level was significantly increased from 2.3 to 134.1 ng mL−1 1 h post-stress/injection and returned to a resting basal value 24 h after the stress/injection. In fish injected with 5 mg kg−1 body weight cortisol, mean serum cortisol level reached a peak up to 2500 ng mL−1 1 h after injection. 63 % of the females (mean body weight: 242 ± 4 g) submitted to the acute stress ovulated within 72 h after the stress. In the same way, cortisol injection (5 mg kg−1 body weight) at the 10th day of the maturation cycle led to a twofold reduction of the time before ovulation compared to vehicle injected control fish. Relative and total fecundity were significantly decreased in females submitted to an acute stress or cortisol injected at 5 mg kg−1 body weight, but not fertilization or hatching rates. In conclusion, acute stress and cortisol induction exert both positive and negative effects on the final reproductive process in O. niloticus, and cortisol is the endocrine mediator causing these changes.


Cortisol Stress Fish reproduction Oocyte maturation Nile tilapia 


  1. Barcellos LJG, Nicolaiewsky S, de Souza SMG, Lulhier F (1999) Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquac Res 30:437–444CrossRefGoogle Scholar
  2. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525PubMedCrossRefGoogle Scholar
  3. Binuramesh C, Prabakaran M, Steinhagen D, Dinakaran MR (2005) Effect of chronic confinement stress on the immune responses in different sex ratio groups of Oreochromis niloticus (Peters). Aquaculture 250:47–59CrossRefGoogle Scholar
  4. Campbell PM, Pottinger TG, Sumpter JP (1992) Stress reduces the quality of gametes produced by rainbow trout. Biol Reprod 47:1140–1150PubMedCrossRefGoogle Scholar
  5. Contreras-Sanchez WM, Schreck CB, Fitzpatrick MS, Pereira CB (1998) Effects of stress on the reproductive performance of rainbow trout (Oncorhynchus mykiss). Biol Reprod 58:439–447PubMedCrossRefGoogle Scholar
  6. Correa SA, Fernandes MO, Iseki KK, Negrao JA (2003) Effect of the establishment of dominance relationships on cortisol and other metabolic parameters in Nile tilapia (Oreochromis niloticus). Braz J Med Biol Res 36(12):1725–1731PubMedCrossRefGoogle Scholar
  7. Coward K, Bromage NR, Little DC (1998) Inhibition of spawning and associated suppression of sex steroid level during confinement in the substrate-spawning Tilapia zillii. J Fish Biol 52:152–165Google Scholar
  8. Ding JL, Lim EH, Lam TJ (1994) Cortisol-induced hepatic vitellogenin mRNA in Oreochromis aureus (Steindachner). Gen Comp Endocrinol 96:276–287PubMedCrossRefGoogle Scholar
  9. Foo JTW, Lam TJ (1993a) Retardation of ovarian growth and depression of serum steroid levels in the tilapia, Oreochromis mossambicus, by cortisol implantation. Aquaculture 115:133–143CrossRefGoogle Scholar
  10. Foo JTW, Lam TJ (1993b) Serum cortisol response to handling stress and the effect of cortisol implantation on testosterone level in the tilapia, Oreochromis mossambicus. Aquaculture 115:145–158CrossRefGoogle Scholar
  11. Hussain MG (2004) General and reproductive biology of Tilapia. In: Hussain MG (ed) Farming of tilapia: breeding plans, mass seed production and aquaculture techniques. Momin Offset Press, Dhaka, pp 9–17Google Scholar
  12. Iwama GK, Pickering AD, Sumpter JP, Schreck CB (1997) Fish stress and health in aquaculture. Cambridge University Press, CambridgeGoogle Scholar
  13. Kammerer BD, Cech JJ Jr, Kültz D (2010) Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp Biochem Physiol A 157:260–265CrossRefGoogle Scholar
  14. Milla S, Wang N, Mandiki SMN, Kestemont P (2009) Corticosteroids: friends or foes of teleost fish reproduction? Comp Biochem Phys A 153:242–251CrossRefGoogle Scholar
  15. Myers JM, Hershberger WK (1991) Artificial spawning of tilapia eggs. J World Aquac Soc 22(2):77–82CrossRefGoogle Scholar
  16. Pankhurst NW (1998) Further evidence of the equivocal effects of cortisol on in vitro steroidogenesis by ovarian follicles of rainbow trout Oncorhynchus mykiss. Fish Physiol Biochem 19:315–323CrossRefGoogle Scholar
  17. Pankhurst NW (2011) The endocrinology of stress in fish: an environmental perspective. Gen Comp Endocrinol 170:265–275PubMedCrossRefGoogle Scholar
  18. Schreck CB (2010) Stress and fish reproduction: the role of allostasis and hormesis. Gen Comp Endocrinol 165:549–556PubMedCrossRefGoogle Scholar
  19. Schreck CB, Contreras-Sanchez W, Fitzpatrick MS (2001) Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197:3–24CrossRefGoogle Scholar
  20. Shankar DS, Kulkarni RS (2006) Effect of cortisol on female freshwater fish Notopterus notopterus. J Environ Biol 27(4):727–731PubMedGoogle Scholar
  21. Small BC (2004) Effect of dietary cortisol administration on growth and reproductive success of channel catfish. J Fish Biol 64:589–596CrossRefGoogle Scholar
  22. Soso A, Barcellos LJG, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Lima M, Bolognesi da Silva L, Calliari A, Finco JA (2008) The effects of stressful broodstock handling on hormonal profiles and reproductive performance of Rhamdia quelen (Quoy and Gaimard) females. J World Aquac Soc 39(6):835–841CrossRefGoogle Scholar
  23. Srisakultiew P, Wee KL (1988) Synchronous spawning of Nile tilapia through hypophysation and temperature manipulation. In: Pullin RSV, Bhukaswan T, Tonguthai K, Maclean JL (eds) The second international symposium on tilapia in aquaculture, pp 275–284Google Scholar
  24. Stratholt ML, Donaldson EM, Liley NR (1997) Stress induced elevation of plasma cortisol in adult female coho salmon (Oncorhynchus kisutch), is reflected in egg cortisol content, but does not appear to affect early development. Aquaculture 158:141–153CrossRefGoogle Scholar
  25. Tacon P, Baroiller JF, Le Bail PY, Prunet P, Jalabert B (2000) Effect of egg deprivation on sex steroids, gonadotropin, prolactin, and growth hormone profiles during the reproductive cycle of the mouthbrooding cichlids fish Oreochromis niloticus. Gen Comp Endocrinol 117:54–65PubMedCrossRefGoogle Scholar
  26. Vijayan MM, Pereira C, Grau EG, Iwama GK (1997) Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp Biochem Phys C 116:89–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vincent Gennotte
    • 1
  • Philippe Sawadogo
    • 2
  • Sylvain Milla
    • 3
    • 4
  • Patrick Kestemont
    • 3
  • Charles Mélard
    • 1
  • Carole Rougeot
    • 1
  1. 1.Aquaculture Research and Education Centre (CEFRA)University of LiègeTihangeBelgium
  2. 2.Direction Générale des Ressources HalieutiquesOuagadougou 03Burkina Faso
  3. 3.Research Unit in Environmental and Evolutive Biology (URBE)The University of NamurNamurBelgium
  4. 4.Unité de Recherche Animal et Fonctionnalités des Produits AnimauxUniversité de LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations