Fish Physiology and Biochemistry

, Volume 38, Issue 6, pp 1553–1563

Channel catfish, Ictalurus punctatus (Rafinesque), tetraspanin membrane protein family: identification, characterization and phylogenetic analysis of tetraspanin 3 and tetraspanin 7 (CD231) transcripts

Article

Abstract

Tetraspanins, a large cell surface protein superfamily characterized by having four transmembrane domains, play many critical roles in physiological and pathological processes. In this study, we report the identification, characterization and phylogenetic analysis of the channel catfish tetraspanin 3 and tetraspanin 7 (CD231) transcripts. The full-length nucleotide sequences of tetraspanin 3 and tetraspanin 7 cDNA have 1,453 and 1,842 base pairs, respectively. Analysis of the nucleotide sequences reveals that each has one open reading frame (ORF). The ORF of tetraspanin 3 appears to encode 241 amino acids with calculated molecular mass of 26.8 kDa, while the ORF of tetraspanin 7 potentially encodes 251 amino acids with calculated molecular mass of 27.9 kDa. By comparison with the human counterparts, the channel catfish tetraspanin 3 and tetraspanin 7 peptides have four transmembrane domains, three intracellular domains and two (small and large) extracellular domains. In addition, several characteristic features critical for structure and functions in mammalian tetraspanins are also conserved in channel catfish tetraspanin 3 and tetraspanin 7. The transcripts were detected by RT-PCR in restrictive organs. These results with those from our previous studies on other channel catfish tetraspanins provide important information for further investigating the roles of various tetraspanins in channel catfish infection with microorganisms.

Keywords

Channel catfish Ictalurus punctatus Tetraspanin 3 TSPAN3 Tetraspanin 7 TSPAN7 CD231 

References

  1. Angelisova P, Hilgert I, Horejsi V (1994) Association of four antigens of the tetraspanin family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39:249–256PubMedCrossRefGoogle Scholar
  2. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  3. Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151PubMedGoogle Scholar
  4. Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96PubMedCrossRefGoogle Scholar
  5. Boismenu R, Rhein M, Fischer WH, Havran WL (1996) A role for CD81 in early T cell development. Science 271:198–200PubMedCrossRefGoogle Scholar
  6. Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154PubMedCrossRefGoogle Scholar
  7. Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T (2004) CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci USA 101:7270–7274PubMedCrossRefGoogle Scholar
  8. Emi N, Kitaori K, Seto M, Ueda R, Saito H, Takahashi T (1993) Isolation of a novel cDNA clone showing marked similarity to ME491/CD63 superfamily. Immunogenetics 37:193–198PubMedCrossRefGoogle Scholar
  9. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002PubMedCrossRefGoogle Scholar
  10. Fujiki K, Gauley J, Bols N, Dixon B (2002) Cloning and characterization of cDNA clones encoding CD9 from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Immunogenetics 54:604–609PubMedCrossRefGoogle Scholar
  11. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, NY, pp 571–607CrossRefGoogle Scholar
  12. Gui L, Wang B, Li FH, Sun YM, Luo Z, Xiang JH (2012) Blocking the large extracellular loop (LEL) domain of FcTetraspanin-3 could inhibit the infection of white spot syndrome virus (WSSV) in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. doi:10.1016/j.fsi.2012.02.022 Google Scholar
  13. Guo M, Huang T, Cui Y, Pan B, Shen A, Sun Y, Yi Y, Wang Y, Xiao G, Sun G (2008) PrPC interacts with tetraspanin-7 through bovine PrP154-182 containing alpha-helix 1. Biochem Biophys Res Commun 365:154–157PubMedCrossRefGoogle Scholar
  14. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811PubMedCrossRefGoogle Scholar
  15. Hemler ME (2008) Targeting of tetraspanin proteins–potential benefits and strategies. Nat Rev Drug Discov 7:747–758PubMedCrossRefGoogle Scholar
  16. Hosokawa Y, Ueyama E, Morikawa Y, Maeda Y, Seto M, Senba E (1999) Molecular cloning of a cDNA encoding mouse A15, a member of the transmembrane 4 superfamily, and its preferential expression in brain neurons. Neurosci Res 35:281–290PubMedCrossRefGoogle Scholar
  17. Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms. Genomics 86:674–684PubMedCrossRefGoogle Scholar
  18. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148PubMedCrossRefGoogle Scholar
  19. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  21. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321PubMedCrossRefGoogle Scholar
  22. Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology 20:218–224PubMedCrossRefGoogle Scholar
  23. Lim C, Yildirim-Aksoy M, Shelby R, Li MH, Klesius PH (2010) Growth performance, vitamin E status, and proximate and fatty acid composition of channel catfish, Ictalurus punctatus, fed diets containing various levels of fish oil and vitamin E. Fish Physiol Biochem 36:855–866PubMedCrossRefGoogle Scholar
  24. Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442PubMedGoogle Scholar
  25. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324PubMedCrossRefGoogle Scholar
  26. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedCrossRefGoogle Scholar
  27. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Expt Cell Res 315:1584–1592CrossRefGoogle Scholar
  28. Puls KL, Wright MD (2000) The molecular characterization of mouse tspan-3. DNA Seq 11:271–275PubMedGoogle Scholar
  29. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  30. Seigneuret M, Delaguillaumie A, Lagaudrière-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064PubMedCrossRefGoogle Scholar
  31. Silvie O, Rubinstein E, Franetich J-F, Prenant M, Elodie Belnoue E, Rénia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96PubMedCrossRefGoogle Scholar
  32. Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008) Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions Comp. Biochem Physiol B Biochem Mol Biol 151:296–304CrossRefGoogle Scholar
  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  34. Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (2001) OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 153:295–305PubMedCrossRefGoogle Scholar
  35. Todd SC, Doctor VS, Levy S (1998) Sequences and expression of six new members of the tetraspanin/TM4SF family. Biochim Biophys Acta 1399:101–104PubMedCrossRefGoogle Scholar
  36. Tokoro Y, Shibuya K, Osawa M, Tahara-Hanaoka S, Iwama A, Kitamura T, Nakauchi H, Shibuya A (2001) Molecular cloning and characterization of mouse Tspan-3, a novel member of the tetraspanin superfamily, expressed on resting dendritic cells. Biochem Biophys Res Commun 288:178–183PubMedCrossRefGoogle Scholar
  37. United States Department of Agriculture (2007) National Agricultural Statistics Service. Catfish Production Report. http://www.nass.usda.gov
  38. Yeh H-Y, Klesius PH (2009) Channel catfish, Ictalurus punctatus Rafinesque 1818, tetraspanin membrane protein family: characterization and expression analysis of CD81 cDNA. Vet Immunol Immunopathol 128:431–436PubMedCrossRefGoogle Scholar
  39. Yeh H-Y, Klesius PH (2010a) Channel catfish (Ictalurus punctatus Rafinesque, 1818) tetraspanin membrane protein family: Identification, characterization and expression analysis of CD63 cDNA. Vet Immunol Immunopathol 133:302–308PubMedCrossRefGoogle Scholar
  40. Yeh H-Y, Klesius PH (2010b) Sequence analysis, characterization and tissue distribution of channel catfish (Ictalurus punctatus Rafinesque, 1818) myeloperoxidase cDNA. Fish Shellfish Immunol 28:504–509PubMedCrossRefGoogle Scholar
  41. Yoder JA, Litman GW (2000) The zebrafish fth1, slc3a2, men1, pc, fgf3, and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Gene 261:235–242PubMedCrossRefGoogle Scholar
  42. Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrié A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P, Fauchereau F, Friocourt G, des Portes V, Cardona A, Frints S, Meindl A, Brandau O, Ronce N, Moraine C, van Bokhoven H, Ropers HH, Sudbrak R, Kahn A, Fryns JP, Beldjord C, Chelly J (2000) A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24:167–170PubMedCrossRefGoogle Scholar
  43. Zhu J, Yan K, Lu L, Peng C, Zhou C, Chen S, Xie X, Dong M, Xu A (2006) Molecular cloning and characterization of CD9 cDNA from cartilaginous fish, red stingray, Dasyatis akajei. Mol Immunol 43:1534–1540PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA)  2012

Authors and Affiliations

  1. 1.Aquatic Animal Health Research Unit, Agricultural Research ServiceUnited States Department of AgricultureAuburnUSA
  2. 2.Poultry Microbiological Safety Research UnitRichard B. Russell Research Center, Agricultural Research Service, United States Department of AgricultureAthensUSA

Personalised recommendations