Advertisement

Fish Physiology and Biochemistry

, Volume 38, Issue 1, pp 43–60 | Cite as

Fish welfare and genomics

  • P. PrunetEmail author
  • Ø. Øverli
  • J. Douxfils
  • G. Bernardini
  • P. Kestemont
  • D. Baron
Article

Abstract

Keywords

Transcriptome Gene expression Proteome Stress responses Stressors Allostasis 

References

  1. Aguilar R, Gil L, Fernandez-Teruel A, Tobeña A (2004) Genetically-based behavioral traits influence the effects of shuttle box avoidance overtraining and extinction upon intertrial responding: a study with the Roman rat strains. Behav Process 66:63–72CrossRefGoogle Scholar
  2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511PubMedCrossRefGoogle Scholar
  3. Aluru N, Vijayan MM (2007) Heaptic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol Genom 31:489–491CrossRefGoogle Scholar
  4. Arlinghaus R, Cooke SJ, Schwab A, Cowx IG (2007) Fish welfare: a challenge to the feelings-based approach, with implications for recreational fishing. J Fish Biol 8:57–71Google Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29PubMedCrossRefGoogle Scholar
  6. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235CrossRefGoogle Scholar
  7. Aubin-Horth N, Desjardins JK, Martei YM, Balshine S, Hofmann HA (2007) Masculinized dominant females in a cooperatively breeding species. Mol Ecol 16:1349–1358PubMedCrossRefGoogle Scholar
  8. Babin PJ, Thisse C, Durliat M, Andre M, Akimenko MA, Thisse B (1997) Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. Proc Natl Acad Sci USA 94(16):8622–8627PubMedCrossRefGoogle Scholar
  9. Baron D, Raharijaona M, Houlgatte R (2007) DNA microarrays. IRBM 28(5–6):210–215CrossRefGoogle Scholar
  10. Baron D, Bihouee A, Teusan R, Dubois E, Savagner F, Steenman M et al (2011) MADGene: retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets. Bioinformatics 27:725–726PubMedCrossRefGoogle Scholar
  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  12. Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S (2005) Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev 29:67–81Google Scholar
  13. Becker CH, Bern M (2010) Recent developments in quantitative proteomics. Mutat Res (in press)Google Scholar
  14. Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868PubMedCrossRefGoogle Scholar
  15. Blais A, Tsikitis M, costa-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569PubMedCrossRefGoogle Scholar
  16. Blow N (2008) Metabolomics: biochemistry’s new look. Nature 455:697–700PubMedCrossRefGoogle Scholar
  17. Bosworth CA, Chou C, Cole RB, Rees BB (2005) Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics 5:1362–1371PubMedCrossRefGoogle Scholar
  18. Braithwaite VA, Huntingford FA (2004) Fish and welfare: do fish have the capacity for pain perception and suffering? Anim Welf 13:S87–S92Google Scholar
  19. Brambell C (1965) Report of the technical committee to enquire into the welfare of animals kept under intensive livestock husbandry systems. Command Report 2836, Her Majesty’s Stationery Office, LondonGoogle Scholar
  20. Broglio C, Rodriguez F, Gomez A, Arias JL, Salas C (2010) Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 210:191–201PubMedCrossRefGoogle Scholar
  21. Broom D (1986) Indicators of poor welfare. Brit Vet J 142:524–526CrossRefGoogle Scholar
  22. Broom D, Johnson K (1993) Stress and animal welfare. Chapman and Hall, LondonGoogle Scholar
  23. Buckley BA, Gracey AY, Somero GN (2006) The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 209:2660–2677PubMedCrossRefGoogle Scholar
  24. Caipang CMA, Brinchmann MF, Berg I, Iversen M, Eliassen R, Kiron V (2008) Changes in selected stress and immune-related genes in Atlantic cod, Gadus morhua, following overcrowding. Aquacult Res 39:1533–1540CrossRefGoogle Scholar
  25. Cairns MT, Johnson MC, Talbot AT, Pemmasani JK, McNeill RE, Houeix B, Sangrador-Vegas A, Pottinger TG (2008) A cDNA microarray assessment of gene expression in the liver of rainbow trout (Oncorhynchus mykiss) in response to a handling and confinement stressor. Comp Biochem Physiol Part D 3(1):51–66Google Scholar
  26. Calduch-Giner JA, Davey G, Saera-Vila A, Houeix B, Talbot A, Prunet P, Cairns MT, Pérez-Sánchez J (2010) Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.). BMC Genomics 11:193PubMedCrossRefGoogle Scholar
  27. Carboni L, Piubelli C, Pozzato C, Astner H, Arban R, Righetti PG, Hamdan M, Domenici E (2006) Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience 137:1237–1246PubMedCrossRefGoogle Scholar
  28. Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jégou B, Primig M (2007) The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci USA 104(20):8346–8351PubMedCrossRefGoogle Scholar
  29. Chandroo KP, Duncan IJH, Moccia RD (2004) Can fish suffer?: perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 86:225–250CrossRefGoogle Scholar
  30. Chou MY, Hsiao CD, Chen SC, Chen IW, Liu ST, Hwang PP (2008) Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J Exp Biol 211(19):3077–3084PubMedCrossRefGoogle Scholar
  31. Cossins A, Fraser J, Hughes J, Gracey A (2006) Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J Exp Biol 209:2328–2336PubMedCrossRefGoogle Scholar
  32. Dawkins MS (2006) A user’s guide to animal welfare science. Trends Ecol Evol 21:77–82PubMedCrossRefGoogle Scholar
  33. Diekmann H, Anichtchik O, Fleming A, Futter M, Goldsmith P, Roach A, Rubinsztein DC (2009) Decreased BDNF levels are a major contributor to the embryonic phenotype of Huntingtin knockdown zebrafish. J Neurosci 29(5):1343–1349PubMedCrossRefGoogle Scholar
  34. Duncan IJH (2006) The changing concept of animal sentience. Appl Anim Behav Sci 100:11–19CrossRefGoogle Scholar
  35. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426PubMedCrossRefGoogle Scholar
  36. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868PubMedCrossRefGoogle Scholar
  37. Engel BT (1985) Stress is a noun! No, a verb! No, an adjective. In: Field TM, McCabe PM, Schneiderman N (eds) Stress and coping. Erlbaum, Hillsdale, NJ, pp 3–12Google Scholar
  38. Evans DH, Piermarini M, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous waste. Physiol Rev 85:97–177PubMedCrossRefGoogle Scholar
  39. Fast MD, Hosoya S, Johnson SC, Afonso LOB (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol 24:194–204 Google Scholar
  40. Fiol DF, Kültz D (2005) Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc Natl Acad Sci USA 102:927–932PubMedCrossRefGoogle Scholar
  41. Fiol DF, Chan S, Kültz D (2006) Identification and pathway analysis of immediate hyperosmotic stress responsive molecular mechanisms in tilapia (Oreochromis mossambicus) gill. Comp Biochem Physiol Part D 1:344–356Google Scholar
  42. Fraser D (2009) Animal behaviour, animal welfare and the scientific study of affect. Appl Anim Behav Sci 118:108–117CrossRefGoogle Scholar
  43. Fraser J, Vieira de Mello L, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci 103:2977–2981PubMedCrossRefGoogle Scholar
  44. Frijda N (1986) The emotions. Cambridge University Press, CambridgeGoogle Scholar
  45. FSBI (2002) Fish welfare. Briefing paper 2 fisheries society of the British Isles, Granta Information Systems, CambridgeGoogle Scholar
  46. Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, L). Gene 341:111–118PubMedCrossRefGoogle Scholar
  47. Gornati R, Cavaliere R, Terova G, Saroglia M, Benardini G (2005a) Molecular biology and fish welfare: a winning combination. Aquacult Int 13:51–55CrossRefGoogle Scholar
  48. Gornati R, Papis E, Rimoldi S, Chini V, Terova G, Prati M, Saroglia M, Bernardini G (2005b) Molecular markers for animal biotechnology: sea bass (Dicentrarchus labrax, L) HMG-CoA reductase mRNA. Gene 344:299–305PubMedCrossRefGoogle Scholar
  49. Gracey AY (2007) Interpreting physiological responses to environmental change through gene expression profiling. J Exp Biol 209:1584–1592CrossRefGoogle Scholar
  50. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci 98:1993–1998PubMedCrossRefGoogle Scholar
  51. Gracey AY, Fraser EJ, Li W, Fang Y, Taylor RR, Rogers J, Brass A, Cossins AR (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 101:16970–16975PubMedCrossRefGoogle Scholar
  52. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedGoogle Scholar
  53. Hashimoto M, Heinrich G (1997) Brain-derived neurotrophic factor gene expression in the developing zebrafish. Int J Dev Neurosci 15(8):983–997PubMedCrossRefGoogle Scholar
  54. Haugarvoll E, Bjerkås I, Nowak BF, Hordvik I, Koppang EO (2008) Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J Anat 213(2):202–209PubMedCrossRefGoogle Scholar
  55. Heinrich G (2003) A novel BDNF gene promoter directs expression to skeletal muscle. BMC Neurosci 4:1CrossRefGoogle Scholar
  56. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126PubMedCrossRefGoogle Scholar
  57. Huntingford FA (2008) Animal welfare in aquaculture. In: Culver K, Castle D (eds) Aquaculture innovation and social transformation. Springer, Netherlands, pp 21–33CrossRefGoogle Scholar
  58. Huntingford FA, Adams C (2005) Behavioural syndromes in farmed fish: implications for production welfare. Behaviour 142:1207–1221CrossRefGoogle Scholar
  59. Huntingford FA, Kadri S (2009) Taking account of fish welfare: lessons from aquaculture. J Fish Biol 75:2862–2867PubMedCrossRefGoogle Scholar
  60. Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372CrossRefGoogle Scholar
  61. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391PubMedCrossRefGoogle Scholar
  62. Jobling M, Koskela J, Winberg S (1999) Feeding and growth of whitefish fed restricted and abundant rations: influences on growth heterogeneity and brain serotonergic activity. J Fish Biol 54:437–449CrossRefGoogle Scholar
  63. Johansen IB, Sanvik GK, Nilsson GE, Bakken M, Overli O (2011) Cortisol receptor expression differs in the brains of rainbow trout selected for divergent cortisol responses. Comp Biochem Physiol part D 6:126–132Google Scholar
  64. Jørgensen A, Nielsen JE, Morthorst JE, Bjerregaard P, Leffers H (2009) Laser capture microdissection of gonads from juvenile zebrafish. Reprod Biol Endocrinol 14(7):97CrossRefGoogle Scholar
  65. Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G (2007) Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 31:385–401PubMedCrossRefGoogle Scholar
  66. Kiley-Worthington M (1989) Ecological, environmental and ethically sound environments for animals: toward symbiosis. J Agr Ethics 2:323–347CrossRefGoogle Scholar
  67. Kim HG, Kim KL (2007) Decreased hippocampal cholinergic neuro stimulating peptide precursor protein associated with stress exposure in rat brain by proteomic analysis. J Neurosci Res 85:2898–2908PubMedCrossRefGoogle Scholar
  68. Koolhaas JM (2008) Coping style and immunity in animals: making sense of individual variation. Brain Behav Immun 22:662–667PubMedCrossRefGoogle Scholar
  69. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neuroscie Biobehav Rev 23:925–935CrossRefGoogle Scholar
  70. Korte SM, Koolhaas JM, Wingfield JC, McEwen BS (2005) The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 29:3–38PubMedCrossRefGoogle Scholar
  71. Korte SM, Olivier B, Koolhaas JM (2007) A new animal welfare concept based on allostasis. Physiol Behav 92:422–428PubMedCrossRefGoogle Scholar
  72. Krasnov A, Koskinen H, Pehkonen P, Rexroad III CE, Afanasyev S, Mölsä H (2005) Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics 6(3):1–11Google Scholar
  73. Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257PubMedCrossRefGoogle Scholar
  74. Kültz D, Fiol D, Valkova N, Gomez-Jimenez S, Chan SY, Lee J (2007) Functional genomics and proteomics of the cellular osmotic stress response in ‘non-model’ organisms. J Exp Biol 210:1593–1601PubMedCrossRefGoogle Scholar
  75. Lanahan A, Worley P (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem 70:37–43PubMedCrossRefGoogle Scholar
  76. Lazarus R, Launier R (1978) Stress-related transactions between person and environment. In: Pervin LA, Lewis M (eds) Perspectives in interactional psychology. Plenum, New York, pp 287–327CrossRefGoogle Scholar
  77. Leguen I, Odjo N, Le Bras Y, Luthringer B, Baron D, Monod G, Prunet P (2010) Effect of seawater transfer on CYP1A gene expression in rainbow trout gills. Comp Biochem Physiol A Mol Integr Physiol 156(2):211–217PubMedCrossRefGoogle Scholar
  78. Levine S, Ursin H (1991) What is stress? In: Brown MR, Koob GF, Rivier C (eds) Stress: neurobiology and neuroendocrinology. Dekker, New York, pp 3–21Google Scholar
  79. López-Schier H, Hudspeth AJ (2006) A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc Natl Acad Sci USA 103(49):18615–18620PubMedCrossRefGoogle Scholar
  80. MacKenzie S, Ribas L, Pilarczyk M, Capdevila DM, Kadri S, Huntingford FA (2009) Screening for coping style increases the power of gene expression studies. PLOS One 4:e5314PubMedCrossRefGoogle Scholar
  81. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093PubMedCrossRefGoogle Scholar
  82. McEwen BS, Stellar E (1993) Stress and the individual: mechanisms leading to disease. Arch Intern Med 153:2093–2101PubMedCrossRefGoogle Scholar
  83. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15PubMedCrossRefGoogle Scholar
  84. McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–111PubMedCrossRefGoogle Scholar
  85. Moberg G (2000) Biological responses to stress: implications for animal welfare. In: Moberg G, Mench J (eds) The biology of snimal stress: Basic principles and implications for animal welfare. CABI Publishing, Wallingford, pp 1–22CrossRefGoogle Scholar
  86. Mommoda TS, Schwindt AR, Feist GW, Gerwick L, Bayne CJ, Schreck CB (2007) Gene expression in the liver of rainbow trout Oncorhynchus mykiss, during the stress response. Comp Biochem Physiol Part D 2:303–315Google Scholar
  87. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M (2003) Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet 19(10):570–577PubMedCrossRefGoogle Scholar
  88. Moreira PSA, Pulman KGT, Pottinger TG (2004) Extinction of a conditioned response in rainbow trout selected for high or low responsiveness to stress. Horm Behav 46:450–457PubMedCrossRefGoogle Scholar
  89. Mu J, Xie P, Yang Z-S, Yang D-L, Lv F-J, Luo T-Y, Li Y (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256PubMedCrossRefGoogle Scholar
  90. Northcutt RG (2006) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 494:903–943PubMedCrossRefGoogle Scholar
  91. Oehlers LP, Perez AN, Walter RB (2007) Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comp Biochem Physiol C 145:120–133Google Scholar
  92. Øverli Ø, Winberg S, Pottinger TG (2005) Behavioral and neuroendocrine correlates of selection fro stress responsiveness in rainbow trout–a review. Integr Comp Biol 45:463–474PubMedCrossRefGoogle Scholar
  93. Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan WJ, Summers CH, Nilsson GE (2007) Evolutionary background for stress-coping styles: Relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev 31:396–412PubMedCrossRefGoogle Scholar
  94. Owen SF, Giltrow E, Huggett DB, Hutchison TH, Saye J, Winter MJ, Sumpter JP (2007) Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. Aquat toxicol 82:145–162PubMedCrossRefGoogle Scholar
  95. Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimatation to constant temperatures and fluctuating daily temperatures in ana annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254PubMedCrossRefGoogle Scholar
  96. Prunet P, Cairns MT, Winberg S, Pottinger TG (2008) Functional genomics of stress responses in fish. Rev Fish Sci 16:157–166CrossRefGoogle Scholar
  97. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54PubMedCrossRefGoogle Scholar
  98. Reilly SC, Cossins AR, Quinn JP, Sneddon LU (2004) Discovering genes: the use of microarrays and laser capture microdissection in pain research. Brain Res Rev 46:225–233PubMedCrossRefGoogle Scholar
  99. Reilly SC, Quinn JP, Cossins AR, Sneddon LU (2008) Novel candidate genes identified in the brain during nociception in common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). Neurosci Lett 437:1350–2138CrossRefGoogle Scholar
  100. Reilly SC, Kipar A, Hughes DJ, Quinn JP, Cossins AR, Sneddon LU (2009) Investigation of Van Gogh-like 2 mRNA regulation and localisation in response to nociception in the brain of adult common carp (Cyprinus carpio). Neurosci Lett 465(3):290–294PubMedCrossRefGoogle Scholar
  101. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309PubMedCrossRefGoogle Scholar
  102. Renn SC, Aubin-Horth N, Hofmann HA (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 5:42PubMedCrossRefGoogle Scholar
  103. Rimoldi S, Terova G, Brambilla F, Bernardini G, Gornati R, Saroglia M (2009) Molecular characterization and expression analysis of Na+/H+ exchanger (NHE)-1 and c-Fos genes in sea bass (Dicentrarchus labrax, L) exposed to acute and chronic hypercapnia. J Exp Mar Biol 375:32–40CrossRefGoogle Scholar
  104. Rollin B (1993) Animal welfare, science and value. J Agr Environ Ethic 6(Suppl 2):44–50Google Scholar
  105. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389PubMedCrossRefGoogle Scholar
  106. Rose JD (2002) The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci 10:1–38CrossRefGoogle Scholar
  107. Rose JD (2007) Anthropomorphism and ‘mental welfare’ of fishes. Dis Aquat Org 75:139–154PubMedCrossRefGoogle Scholar
  108. Ruiz-Gomez MD, Kittilsen S, Höglund E, Huntingford FA, Sørensen C, Pottinger TG, Bakken M, Winberg S, Korzan WJ, Øverli Ø (2008) Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles: When doves become hawks. Horm Behav 54:534–538CrossRefGoogle Scholar
  109. Ruiz-Gomez MD, Huntingford FA, Øverli Ø, Thörnqvist PO (2011) Response to environmental change in rainbow trout selected for divergents coping styles. Physiol Behav 102(3–4):317–322CrossRefGoogle Scholar
  110. Sandøe P, Simonsen H (1992) Assessing animal welfare: where does science end and philosophy begin? Anim Welf 1:257–267Google Scholar
  111. Santos GA, Schrama JW, Mamauag REP, Rombout JHWM, Verreth JAJ (2010) Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): The combined effects of fish crowding and water quality deterioration. Aquaculture 299:73–80CrossRefGoogle Scholar
  112. Sarropoulou E, Kotoulas G, Power DM, Geisler R (2005) Gene expression profining of gilhead sea bream during early development and detection of stress-related genes by the application of cDNA microarray technology. Physiol Genomics 23:182–191PubMedCrossRefGoogle Scholar
  113. Sathiyaa R, Vijayan MM (2003) Autoregulation of glucocorticoid receptor by cortisol in rainbow trout hepatocytes. Am J Physiol Cell Physiol 284:C1508–C1515PubMedGoogle Scholar
  114. Segal E, Friedman N, Kaminski N, Regev A, Koller D (2005) From signatures to models: understanding cancer using microarrays. Nat Genet 37(Suppl):S38–S45PubMedCrossRefGoogle Scholar
  115. Selye H (1950) Stress. Acta, MontrealGoogle Scholar
  116. Shaffer AL, Rosenwald A, Hurt EM, Giltnane JM, Lam LT, Pickeral OK et al (2001) Signatures of the immune response. Immunity 15:375–385PubMedCrossRefGoogle Scholar
  117. Shen R, Ghosh D, Chinnayan AM (2004) Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data. BMC Genomics 5(1):94PubMedCrossRefGoogle Scholar
  118. Singer MA (2003) Do mammals, birds, reptiles and fish have similar nitrogen conserving systems? Comp Biochem Physiol B 134:543–558PubMedCrossRefGoogle Scholar
  119. Sittaramane V, Sawant A, Wolman MA, Maves L, Halloran MC, Chandrasekhar A (2009) The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininalpha1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish. Dev Biol 325(2):363–373PubMedCrossRefGoogle Scholar
  120. Skynner HA, Amos DP, Murray F, Salim K, Knowles MR, Munoz-Sanjuan I, Camargo LM, Bonnert TP, Guest PC (2006) Proteomic analysis identifies alterations in cellular morphology and cell death pathways in mouse brain after chronic corticosterone treatment. Brain Res 1102:12–26PubMedCrossRefGoogle Scholar
  121. Smith RW, Wood CM, Cash P, Diao L, Pärt P (2005) Apolipoprotein AI could be a significant determinant of epithelial integrity in rainbow trout gill cell cultures: A study in functional proteomics. Biochim Biophys Acta Proteins Proteomics 1749:81–93CrossRefGoogle Scholar
  122. Sneddon LU, Margareto J, Cossins AR (2005) The use of transcriptomics to address questions in behaviour: production of a suppression subtractive hybridisation library form dominance hierarchies of rainbow trout. Physiol Biochem Zool 78(5):695–705PubMedCrossRefGoogle Scholar
  123. Sneddon LU, Schmidt R, Fang Y, Cossins AR (2011) Molecular correlates of social dominance: a novel role for ependymin in aggression. PLoS One 6(4):e18181PubMedCrossRefGoogle Scholar
  124. Sørensen C, Nilsson GE, Summers CH, Øverli Ø (2011) Social stress reduces forebrain cell proliferation in rainbow trout (Oncorhynchus mykiss). Behav Brain Res (in press)Google Scholar
  125. St-Cyr S, Aubin-Horth N (2009) Integrative and genomics approaches to uncover the mechanistic bases of fish behavior and its diversity. Comp Biochem Physiol A Mol Integr Physiol 152(1):9–21PubMedCrossRefGoogle Scholar
  126. Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress, cognition and health. Wiley, New York, pp 629–649Google Scholar
  127. Susman EJ, Schmeelk KH, Worrall BK, Granger DA, Ponirakis A, Chrousos GP (1999) Corticotropin-releasing hormone and cortisol: longitudinal associations with depression and antisocial behavior in pregnant adolescents. J Am Acad Child Adolesc Psych 38:460–467Google Scholar
  128. Takei Y, Kawakoshi A, Tsukada T, Yuge S, Ogoshi M, Inoue K, Hyodo S, Bannai H, Miyano S (2006) Contribution of comparative fish studies to general endocrinology: structure and function of some osmoregulatory hormones. J Exp Zool 305A:787–798CrossRefGoogle Scholar
  129. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285PubMedCrossRefGoogle Scholar
  130. Terova G, Gornati R, Rimoldi S, Bernardini G, Saroglia M (2005) Quantification of a glucocorticoid receptor in sea bass (Dicentrarchus labrax, L.) reared at high stocking density. Gene 357:144–151PubMedCrossRefGoogle Scholar
  131. Terova G, Rimoldi S, Cora S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1 alpha mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159CrossRefGoogle Scholar
  132. Tognoli C, Rossi F, Di Cola F, Baj G, Tongiorgi E, Terova G, Saroglia M, Bernardini G, Gornati R (2010) Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax. BMC Neurosci 11:4PubMedCrossRefGoogle Scholar
  133. Tomie A, Aguado AS, Pohorecky LA, Benjamin D (2000) Individual differences in Pavlovian autoshaping of lever pressing in rats predict stress-induced corticosterone release and mesolimbic levels of monoamines. Pharmacol Biochem Behav 65:509–517PubMedCrossRefGoogle Scholar
  134. Vargas JP, Lopez JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440PubMedCrossRefGoogle Scholar
  135. Vazzana M, Vizzini A, Sanfratello MA, Celi M, Salerno G, Parrinello M (2010) Differential expression of two glucocorticoid receptors in seabass (teleost fish) head kidney after exogeneous cortisol inoculation. Comp Biochem Physiol Part A 157:49–54CrossRefGoogle Scholar
  136. Villarroel F, Bastías A, Casado A, Amthauer R, Concha MI (2007) Apolipoprotein A-I, an antimicrobial protein in Oncorhynchus mykiss: Evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish. Fish Shellfish Immunol 23:197–209PubMedCrossRefGoogle Scholar
  137. Von Holst D (1998) The concept of stress and its relevance for animal behavior. Adv Stud Behav 27:1–131CrossRefGoogle Scholar
  138. von Krogh K, Sørensen C, Nilsson GE, Øverli Ø (2010) Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiol Behav 101:32–39CrossRefGoogle Scholar
  139. Weckwerth W (2010) Metabolomics: an integral technique in systems biology. Bioanalysis 2:829–836PubMedCrossRefGoogle Scholar
  140. Winberg S, Nilsson GE, Olsén KH (1992) The effect of stress and starvation on brain serotonin utilization in Arctic charr (Salvelinus alpinus). J Exp Biol 165:229–239Google Scholar
  141. Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–815CrossRefGoogle Scholar
  142. Wiseman S, Osachoff H, Bassett E, Malhotra J, Bruno J, VanAggelen G, Mommsen TP, Vijayan MM (2007) Gene expression pattern in the liver during recovery from an acute stressor in rainbow trout. Comp Biochem Physiol D 2:234–244Google Scholar
  143. Zhang Z, Ju Z, Wells MC, Walter RB (2009) Genomic approaches in the identification of hypoxia biomarkers in model fish species. J Exp Mar Biol Ecol 381:S180–S187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. Prunet
    • 1
    Email author
  • Ø. Øverli
    • 2
  • J. Douxfils
    • 3
  • G. Bernardini
    • 4
  • P. Kestemont
    • 3
  • D. Baron
    • 5
  1. 1.UR1037 SCRIBE, IFR140INRARennes CedexFrance
  2. 2.Department of Animal and Aquacultural SciencesNorwegian University of Life SciencesÅsNorway
  3. 3.Research Unit in Environmental and Evolutionary Biology (URBE)The University of Namur (FUNDP)NamurBelgium
  4. 4.Department of Biotechnology and Molecular ScienceUniversity of InsubriaVareseItaly
  5. 5.INSERM U533, Institut du Thorax, Faculté de MédecineUniversité de NantesNantesFrance

Personalised recommendations