Fish Physiology and Biochemistry

, Volume 35, Issue 3, pp 453–465 | Cite as

Alterations in the brain monoaminergic neurotransmitters of rainbow trout related to naphthalene exposure at the beginning of vitellogenesis

  • Manuel Gesto
  • Adrián Tintos
  • Rosa Álvarez
  • José L. Soengas
  • Jesús M. Míguez


The contents of dopamine (DA), noradrenaline (NA), serotonin (5HT), and some related metabolites were studied in different brain regions of rainbow trout at two different stages of sexual maturation (at the beginning of vitellogenesis), after naphthalene (NAP) administration. The effects of NAP varied according to duration of exposure, brain region and vitellogenesis stage of the trout, and were more significant during previtellogenesis. The changes observed in DA metabolism were generally stimulatory after exposure for 3 h, and either stimulatory or inhibitory (depending on the brain regions) after exposure for 3 days to NAP. NA levels were altered by NAP in various brain regions, but only during previtellogenesis. With respect to 5HT, treatment with NAP reduced levels of the amine and/or its main metabolite in most of the brain regions studied, particularly 3 h after treatment. The results suggest that NAP might interfere with the processes regulating brain monoamine metabolism, either locally or indirectly by altering steroid feedback to brain centres, and thus disrupt endocrine control of reproductive development through the brain–pituitary axis.


Dopamine Serotonin Naphthalene Polycyclic aromatic hydrocarbons Vitellogenesis Trout 



This work was supported by grants VEM2003-20062 (Ministerio de Ciencia y Tecnología and FEDER, Spain), and PGIDT04PXIC31208PN (Xunta de Galicia, Spain), to J.L. Soengas, and grant AGL2004-08137-c04-03/ACU (Ministerio de Educación y Ciencia and FEDER, Spain) to J.M. Míguez. Manuel Gesto is the recipient of a Xunta de Galicia predoctoral fellowship.


  1. Aluru N, Vijayan MM (2006) β-Naphthoflavone disrupts cortisol production and liver glucocorticoid responsiveness in rainbow trout. Aquat Toxicol 67:273–285. doi:10.1016/j.aquatox.2004.01.010 CrossRefGoogle Scholar
  2. Andersson T, Förlin L, Olsen S, Breton B (1993) Pituitary as a target organ for toxic effects of P4501A1 inducing chemicals. Mol Cell Endocrinol 91:99–105. doi:10.1016/0303-7207(93)90260-Q PubMedCrossRefGoogle Scholar
  3. Barciela P, Soengas JL, Rey P, Aldegunde M, Rozas G (1993) Carbohydrate metabolism in several tissues of rainbow trout, Oncorhynchus mykiss, is modified during ovarian recrudescence. Comp Biochem Physiol B 106:943–948. doi:10.1016/0305-0491(93)90055-A CrossRefGoogle Scholar
  4. Barron MG, Heintz R, Rice SD (2004) Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar Environ Res 58:95–100. doi:10.1016/j.marenvres.2004.03.001 PubMedCrossRefGoogle Scholar
  5. Billard R (1992) Reproduction in rainbow trout: sex differentiation, dynamics of gametogenesis, biology and preservation of gametes. Aquaculture 100:263–298. doi:10.1016/0044-8486(92)90385-X CrossRefGoogle Scholar
  6. Bromage N, Cumaranatunga R (1988) Egg production in the rainbow trout. In: Muir F, Roberts J (eds) Recent advances in aquaculture. Croom Helm, London, pp 63–138Google Scholar
  7. Choksi NY, Kodavanti PRS, Tilson HA, Booth RG (1997) Effects of polychlorinated biphenyls (PCBs) on brain tyrosine hydroxylase activity and dopamine synthesis in rats. Fundam Appl Toxicol 39:76–80. doi:10.1006/faat.1997.2351 PubMedCrossRefGoogle Scholar
  8. Davies B, Bromage N, Swanson P (1999) The brain–pituitary–gonadal axis of female rainbow trout Oncorhynchus mykiss: effects of photoperiod manipulation. Gen Comp Endocrinol 115:155–166. doi:10.1006/gcen.1999.7301 PubMedCrossRefGoogle Scholar
  9. Di Toro DM, McGrath JA, Hansen DJ (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem 19:1951–1970. doi:10.1897/1551-5028(2000)019<1951:TBFNCA>2.3.CO;2CrossRefGoogle Scholar
  10. Evanson M, Van der Kraak GJ (2001) Stimulatory effects of selected PAHs on testosterone production in goldfish and rainbow trout and possible mechanisms of action. Comp Biochem Physiol C 130:249–258Google Scholar
  11. Fingerman SW, Short EC (1983) Changes in neurotransmitter levels in channel catfish after exposure to benzo(a)pyrene, naphthalene, and Aroclor 1254. Bull Environ Contam Toxicol 30:147–151. doi:10.1007/BF01610113 PubMedCrossRefGoogle Scholar
  12. Gesto M, Tintos A, Soengas JL, Míguez JM (2006) Effects of acute and prolonged naphthalene exposure on brain monoaminergic neurotransmitters in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 144:173–183Google Scholar
  13. Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP, Joyce JE et al (2000) Delayed effects on growth and marine survival of pink salmon (Oncorhynchus gorbuscha) after exposure to crude oil during embryonic development. Mar Ecol Prog Ser 208:205–216. doi:10.3354/meps208205 CrossRefGoogle Scholar
  14. Hendricks JD, Meyers TR, Shelton DW, Casteel JL, Bailey GS (1985) Hepatocarcinogenicity of benzo[a]pyrene to rainbow trout by dietary exposure and intraperitoneal injection. J Natl Cancer Inst 74:839–851PubMedGoogle Scholar
  15. Hernández-Rauda R, Rozas G, Rey P, Otero J, Aldegunde M (1999) Changes in the pituitary metabolism of monoamines (dopamine, norepinephrine, and serotonin) in female and male rainbow trout (Oncorhynchus mykiss) during gonadal recrudescence. Physiol Comp Zool 72:352–359CrossRefGoogle Scholar
  16. Hontela A, Rasmussen JB, Audet C, Chevalier G (1992) Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch Environ Contam Toxicol 22:278–283. doi:10.1007/BF00212086 PubMedCrossRefGoogle Scholar
  17. Hornby PJ, Piekut DT (1990) Distribution of catecholamine-synthesizing enzymes in goldfish brains: presumptive dopamine and norepinephrine neuronal organization. Brain Behav Evol 35:49–64. doi:10.1159/000115856 PubMedCrossRefGoogle Scholar
  18. Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent mediated toxicity of weathered crude oil during fish development. Environ Health Perspect 133:1755–1762Google Scholar
  19. Janssen PAH, Lambert JGD, Goos HJT (1995) The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder Platichthys flesus (L). J Fish Biol 47:509–523. doi:10.1111/j.1095-8649.1995.tb01918.x CrossRefGoogle Scholar
  20. Jayasekara S, Sharma RP, Drown DB (1992) Effects of benzo[a]pyrene on steady-state levels of biogenic amines and metabolizing enzymes in mouse brain regions. Ecotoxicol Environ Saf 24:1–12. doi:10.1016/0147-6513(92)90029-3 PubMedCrossRefGoogle Scholar
  21. Khan IA, Thomas P (2001) Disruption of neuroendocrine control of luteinizing hormone secretion by Aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol Reprod 64:955–964. doi:10.1095/biolreprod64.3.955 PubMedCrossRefGoogle Scholar
  22. Khan IA, Mathews S, Okuzawa K, Kagawa H, Thomas P (2001) Alterations in the GnRH-LH system in relation to gonadal stage and Aroclor 1254 exposure in Atlantic croaker. Comp Biochem Physiol B 129:251–259. doi:10.1016/S1096-4959(01)00318-9 PubMedCrossRefGoogle Scholar
  23. Linard B, Anglade A, Corio M, Navas JM, Pakdel F, Saligaut C et al (1996) Estrogen receptors are expressed in a subset of tyrosine hydroxylase-positive neurons of the anterior preoptic region in the rainbow trout. Neuroendocrinology 63:156–165. doi:10.1159/000126952 PubMedCrossRefGoogle Scholar
  24. Meek J (1994) Catecholamines in the brain of Osteichthyes. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 49–76Google Scholar
  25. Navas JM, Zanuy S, Segner H, Carrillo M (2004) β-Naphthoflavone alters normal plasma levels of vitellogenin, 17β-estradiol and luteinizing hormone in sea bass broodstock. Aquat Toxicol 67:337–345. doi:10.1016/j.aquatox.2004.01.016 PubMedCrossRefGoogle Scholar
  26. Nicolas JM (1999) Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquat Toxicol 45:77–90. doi:10.1016/S0166-445X(98)00095-2 CrossRefGoogle Scholar
  27. Pacheco M, Santos MA (2001) Biotransformation, endocrine, and genetic responses of Anguilla anguilla L. to petroleum distillate products and environmentally contaminated waters. Ecotoxicol Environ Saf 49:64–75. doi:10.1006/eesa.2000.2025 PubMedCrossRefGoogle Scholar
  28. Peter RE, Yu KL (1997) Neuroendocrine regulation of ovulation in fishes: basic and applied aspects. Rev Fish Biol Fish 7:173–197. doi:10.1023/A:1018431610220 CrossRefGoogle Scholar
  29. Peterson CH, Rice SD, Short SW, Esler D, Bodkin JL, Ballachey BE et al (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086. doi:10.1126/science.1084282 PubMedCrossRefGoogle Scholar
  30. Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune systems of fish: a review. Aquat Toxicol 77:229–238. doi:10.1016/j.aquatox.2005.10.018 PubMedCrossRefGoogle Scholar
  31. Rozas G, Rey P, Andrés MD, Rebolledo E, Aldegunde M (1990) Distribution of 5-hydroxytryptamine and related compounds in various brain regions of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 8:501–506. doi:10.1007/BF00003407 CrossRefGoogle Scholar
  32. Ruby SM, Hull R, Anderson P (2000) Sublethal lead affects pituitary function of rainbow trout during exogenous vitellogenesis. Arch Environ Contam Toxicol 38:46–51. doi:10.1007/s002449910006 PubMedCrossRefGoogle Scholar
  33. Saligaut C, Bailhache T, Salbert C, Breton B, Jego P (1990) Dynamic characteristics of serotonin and dopamine metabolism in the rainbow trout brain: a regional study using liquid chromatography with electrochemical detection. Fish Physiol Biochem 8:199–205. doi:10.1007/BF00004458 CrossRefGoogle Scholar
  34. Saligaut C, Salbert G, Bailhache T, Bennani S, Jego P (1992a) Serotonin and dopamine turnover in the female rainbow trout (Oncorhynchus mykiss) brain and pituitary: changes during the annual reproductive cycle. Gen Comp Endocrinol 85:261–268. doi:10.1016/0016-6480(92)90010-H PubMedCrossRefGoogle Scholar
  35. Saligaut C, Garnier DH, Bennani S, Salbert G, Bailhache T, Jego P (1992b) Effects of estradiol on brain aminergic turnover of the female rainbow trout (Oncorhynchus mykiss) at the beginning of vitellogenesis. Gen Comp Endocrinol 88:209–216. doi:10.1016/0016-6480(92)90252-F PubMedCrossRefGoogle Scholar
  36. Saligaut C, Linard B, Mañanos EL, Kah O, Breton B, Govoroun M (1998) Release of pituitary gonadotrophins GtH I and GtH II in the rainbow trout (Oncorhynchus mykiss): modulation by estradiol and catecholamines. Gen Comp Endocrinol 109:302–309. doi:10.1006/gcen.1997.7033 PubMedCrossRefGoogle Scholar
  37. Schirmer K, Dixon DG, Greenberg BM, Bols NC (1998) Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127:129–141. doi:10.1016/S0300-483X(98)00030-4 PubMedCrossRefGoogle Scholar
  38. Seegal RF, Bush B, Brosch KO (1991) Subchronic exposure of the adult rat to Aroclor 1254 yields regionally specific changes in central dopaminergic function. Neurotoxicology 12:55–66PubMedGoogle Scholar
  39. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. doi:10.1016/0003-2697(85)90442-7 PubMedCrossRefGoogle Scholar
  40. Stahlschmidt-Allner P, Allner B, Römbke J, Knacker T (1997) Endocrine disrupters in the aquatic environment. Environ Sci Pollut Res 4:155–162CrossRefGoogle Scholar
  41. Thomas P (1990) Teleost model for studying the effects of chemicals on female reproductive endocrine function. J Exp Zool Suppl 4:126–128. doi:10.1002/jez.1402560421 PubMedCrossRefGoogle Scholar
  42. Tintos A, Gesto M, Míguez JM, Soengas JL (2006) Interactive effects of naphthalene treatment and the onset of vitellogenesis on energy metabolism in liver and gonad, and plasma steroid hormones of rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol C 144:155–165CrossRefGoogle Scholar
  43. Tintos A, Gesto M, Míguez JM, Soengas JL (2007) Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 66:139–147. doi:10.1016/j.ecoenv.2005.11.008 PubMedCrossRefGoogle Scholar
  44. Tyler CR, Pottinger TG, Santos E, Sumpter JP, Price S-A, Brooks S et al (1996) Mechanisms controlling egg size and number in the rainbow trout, Oncorhynchus mykiss. Biol Reprod 54:8–15. doi:10.1095/biolreprod54.1.8 PubMedCrossRefGoogle Scholar
  45. Vacher C, Ferrière F, Marmignon MH, Pellegrini E, Saligaut C (2002) Dopamine D2 receptors and secretion of FSH and LH: role of sexual steroids on the pituitary of the female rainbow trout. Gen Comp Endocrinol 127:198–206. doi:10.1016/S0016-6480(02)00046-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Manuel Gesto
    • 1
  • Adrián Tintos
    • 1
  • Rosa Álvarez
    • 2
  • José L. Soengas
    • 1
  • Jesús M. Míguez
    • 1
  1. 1.Laboratorio de Fisiología Animal, Departamento de Biología Funcional y CC de la Salud, Facultad de BiologíaUniversidad de VigoVigoSpain
  2. 2.Laboratorio de Biología Celular, Departamento de Biología Funcional y CC de la Salud, Facultad de BiologíaUniversidad de VigoVigoSpain

Personalised recommendations