Dietary fish oil replacement with lard and soybean oil affects triacylglycerol and phospholipid muscle and liver docosahexaenoic acid content but not in the brain and eyes of surubim juveniles Pseudoplatystoma sp.

  • M. D. Noffs
  • R. C. Martino
  • L. C. Trugo
  • E. C. Urbinati
  • J. B. K. Fernandes
  • L. S. Takahashi
Article

Abstract

Triplicate groups of juvenile suribim were fed for 183 days one of four different isonitrogenous (47.6% crude protein) and isolipidic (18.7% lipid) diets formulated using three different lipid sources: 100% fish oil (FO, diet 1); 100% pig lard (L, diet 2); 100% soybean oil (SO, diet 3), and FO/L/SO (1:1:1, w/w/w; diet 4). The tissue levels of fatty acids 18:2n − 6 and 18:3n − 3 decreased relative to corresponding dietary fatty acid values. The 20:5n − 3 and 22:6n − 3 composition of muscle and liver neutral lipids were linearly correlated with corresponding dietary fatty acid composition. In contrast, the 22:6n − 3 composition of the brain and eye were similar among treatments. The 22:6n − 3 level was enriched in all tissues, particularly in the neural tissues. Similar results were observed for tissue polar lipids: fatty acids content reflected dietary composition, with the exception of the 22:6n − 3 level, which showed enrichment and no differences between groups. Given these results, the importance of the biochemical functions (transport and/or metabolism) of 22:6n − 3 in the development of the neural system of surubim warrants further investigation.

Keywords

Fish oil Lipid metabolism Phospholipids Pig lard Polyunsaturated fatty acids Pseudoplatystoma sp. Soybean oil Triacylglycerols 

Notes

Acknowledgments

The authors are grateful to “Projeto Pacu”, Brazil for providing the experimental fish, to Nutron Alimentos and Mogiana Alimentos, Brazil for providing some of the diet ingredients, and to Dr. Juliette Delabbio of Aquaculture Research Station of Northwestern State University, Louisiana, USA for the English review of this manuscript. The authors are also grateful to the Rio de Janeiro State Research Support Foundation (FAPERJ) (Grant: E/26-170.987-03) as a partial sponsor of this work and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctorate scholarship of Mr. M. D. Noffs.

References

  1. AOAC (Association of Official Analytical Chemists) (2000). Official methods of analysis,17th edn. Association of Official Analytical Chemists, Gaithersburg, MDGoogle Scholar
  2. Barlow S (2002) Resources and markets: The world market overview of fish meal and fish oil. Paper presented to the 2nd Seafood By-products Conf. Anchorage, AlaskaGoogle Scholar
  3. Bell MV, Dick JR (1993) The appearance of rods in the eyes of herring and increased didocosahexaenoyl molecular species of phospholipids. J Mar Biol Assoc UK 73:679–688CrossRefGoogle Scholar
  4. Bell JG, Tocher DR, Farndale BM, Cox DI, McKinney RW, Sargent JR (1997) The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Lipids 32:515–525. doi: 10.1007/s11745-997-0066-4 PubMedCrossRefGoogle Scholar
  5. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR (2001) Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid composition and hepatocyte fatty acid metabolism. J Nutr 131(5):1535–1543PubMedGoogle Scholar
  6. Bell JG, Henderson RJ, Tocher DR, McGhee F, Dick JR, Porter A et al (2002) Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects tissue fatty acid compositions and hepatic fatty acid metabolism. J Nutr 132(2):222–230PubMedGoogle Scholar
  7. Bourre JM, Piciotti M, Dumont O (1990) 6-Desaturase in brain and liver during development and aging. Lipids 25:354–356. doi: 10.1007/BF02544347 PubMedCrossRefGoogle Scholar
  8. Brodtkorb T, Rosenlund G, Lie Ø (1997) Effects of dietary levels of 20:5n – 3 and 22:6n – 3 on tissue lipid composition in juvenile Atlantic salmon, Salmo salar, with emphasis on brain and eye. Aquacult Nutr 3:175–187. doi: 10.1046/j.1365-2095.1997.00085.x CrossRefGoogle Scholar
  9. Caballero MJ, López-Calero G, Socorro J, Rôo FJ, Izquierdo MS, Férnandez AJ (1999) Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture 179:277–290. doi: 10.1016/S0044-8486(99)00165-9 CrossRefGoogle Scholar
  10. Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214:253–271. doi: 10.1016/S0044-8486(01)00852-3 CrossRefGoogle Scholar
  11. Campos P, Martino RC, Trugo LC (2006) Amino acid composition of Brazilian surubim fish (Pseudoplatystoma coruscans) fed diets with different levels and sources of fat. Food Chem 96:126–130. doi: 10.1016/j.foodchem.2005.02.017 CrossRefGoogle Scholar
  12. Connor WE (2000) Importance of n − 3 fatty acids in health and disease. Am J Clin Nutr 71(1):171S–175SPubMedGoogle Scholar
  13. Conquer JA, Holub BJ (1998) Effect of supplementation with different doses of DHA on the levels of circulating DHA as non-esterified fatty acid in subjects of Asian Indian background. J Lipid Res 39:286–292PubMedGoogle Scholar
  14. Cook HW (1978) In vitro formation of polyunsaturated fatty acids by desaturation in the rat brain: some properties of enzymes in developing brain and comparison with liver. J Neurochem 30:1327–1334. doi: 10.1111/j.1471-4159.1978.tb10463.x PubMedCrossRefGoogle Scholar
  15. Dhopeshwarkar GA, Subramanian C (1976) Biosynthesis of polyunsaturated fatty acids in the developing brain. I. Metabolic transformations of intracranially administered 1-14C linolenic acid. Lipids 11:67–71. doi: 10.1007/BF02532586 PubMedCrossRefGoogle Scholar
  16. Dwyer B, Bernsohn J (1979) Incorporation of [1–14C] linolenate into lipids of developing rat brain during essential fatty acid deficiency. J Neurochem 32:833–838. doi: 10.1111/j.1471-4159.1979.tb04567.x PubMedCrossRefGoogle Scholar
  17. Folch JM, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–507PubMedGoogle Scholar
  18. Greiner RS, Catalan JN, Moriguchi T, Salem N Jr (2003) Docosapentaenoic acid does not completely replace DHA in n − 3 FA-deficient rats during early development. Lipids 38:431–435. doi: 10.1007/s11745-003-1080-2 PubMedCrossRefGoogle Scholar
  19. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR et al (2001) A vertebrate fatty acid desaturase with delta 5 and delta 6 activities. Proc Natl Acad Sci USA 98:14304–14309. doi: 10.1073/pnas.251516598 PubMedCrossRefGoogle Scholar
  20. Henderson RJ, Almatar S (1989) Seasonal changes in the lipid composition of herring Clupea harengus in relation to gonad maturation. J Mar Biol Assoc UK 69:323–334CrossRefGoogle Scholar
  21. Juaneda P, Rocquelin G (1985) Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges. Lipids 20:40–41. doi: 10.1007/BF02534360 PubMedCrossRefGoogle Scholar
  22. Lands WEM, Libelt B, Morris A, Kramer NC, Prewitt TE, Bowen P et al (1992) Maintenance of lower proportions of (n − 6) eicosanoid precursors in phospholipids of human plasma in response to added dietary (n − 3) fatty acids. Biochim Biophys Acta 1180:147–162PubMedGoogle Scholar
  23. Martino RC, Cyrino JEP, Portz L, Trugo LC (2002a) Effect of dietary lipid level on nutritional performance of the surubim (Pseudoplatystoma coruscans). Aquaculture 209:209–218. doi: 10.1016/S0044-8486(01)00738-4 CrossRefGoogle Scholar
  24. Martino RC, Cyrino JEP, Portz L, Trugo LC (2002b) Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquaculture 209:233–246. doi: 10.1016/S0044-8486(01)00847-X CrossRefGoogle Scholar
  25. Martino RC, Trugo LC, Cyrino JEP, Portz L (2003) Use of white fat as a replacement for squid liver oil in practical diets for surubim (Pseudoplatystoma coruscans). J World Aquacult Soc 34:192–202. doi: 10.1111/j.1749-7345.2003.tb00056.x CrossRefGoogle Scholar
  26. Martino RC, Cyrino JEP, Portz L, Trugo LC (2005) Performance, carcass, composition and nutrient utilization of surubim (Pseudoplatystoma coruscans, Agassiz) fed diets with varying carbohydrate and lipid levels. Aquacult Nutr 11:131–137. doi: 10.1111/j.1365-2095.2004.00332.x CrossRefGoogle Scholar
  27. Metcalfe AP, Schmitz AA (1961) The rapid preparation of fatty acids for gas chromatographic analysis. Anal Chem 33:363–364Google Scholar
  28. Moore SA, Yoder E, Spector AA (1990) Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors. J Neurochem 55:391–402. doi: 10.1111/j.1471-4159.1990.tb04150.x PubMedCrossRefGoogle Scholar
  29. Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 56:518–524. doi: 10.1111/j.1471-4159.1991.tb08180.x PubMedCrossRefGoogle Scholar
  30. Mourente G (2003) Accumulation of DHA (docosahexaenoic acid; 22:6n − 3) in larval and juvenile fish brain. The big fish bang. In: Browman HI, Skiftesvik AB (eds) Proc 26th Ann Larval Fish Conf 2003. Institute of Marine Research, BergenGoogle Scholar
  31. Mourente G, Tocher DR (1998) The in vivo incorporation and metabolism of [1–14C] linolenate (18:3n–3) in liver, brain and eyes of juveniles of rainbow trout Oncorhynchus mykiss L., and gilthead sea bream Sparus aurata L. Fish Physiol Biochem 18:149–165. doi: 10.1023/A:1007717312480 CrossRefGoogle Scholar
  32. Navarro JC, McEvoy LA, Bell MV, Amat F, Hontoria F, Sargent JR (1997) Effect of different dietary levels of docosahexaenoic acid (DHA, 22:6w–3) on the DHA composition of lipid classes in sea bass larvae eyes. Aquacult Int 5:509–516. doi: 10.1023/A:1018301215592 CrossRefGoogle Scholar
  33. Nouvelot A, Delbart C, Bourre JM (1986) Hepatic metabolism of alpha-linolenic acid in suckling rats, and its possible importance in polyunsaturated fatty acid uptake by the brain. Ann Nutr Metab 30:316–323PubMedCrossRefGoogle Scholar
  34. NRC (National Research Council) (1993) Nutrient requirement of warmwater fishes and shellfishes. National Academy Press, Washington, DC, p 114Google Scholar
  35. Özogul Y, Özyurt G, Özogul F, Kuley E, Polat A (2005) Freshness assessment of European eel (Anguilla anguilla) by sensory, chemical and microbiological methods. Food Chem 92:745–751. doi: 10.1016/j.foodchem.2004.08.035 CrossRefGoogle Scholar
  36. Pawlosky RJ, Barnes A, Salem N Jr (1994) Essential fatty acid metabolism in the feline: relationship between liver and brain production of long-chain polyunsaturated fatty acids. J Lipid Res 35:2032–2040PubMedGoogle Scholar
  37. Pawlosky RJ, Ward G, Salem N Jr (1996) Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids 31:S-103–S-107CrossRefGoogle Scholar
  38. Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:103–115. doi: 10.1016/S0044-8486(97)00121-X CrossRefGoogle Scholar
  39. Sargent JR, Bell G, McEvoy L, Tocher DR, Estevez A (1999) Recent developments in the essential fatty acid nutrition in fish. Aquaculture 177:191–199. doi: 10.1016/S0044-8486(99)00083-6 CrossRefGoogle Scholar
  40. Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci USA 86:2903–2907. doi: 10.1073/pnas.86.8.2903 PubMedCrossRefGoogle Scholar
  41. Sheaff Greiner RC, Zhang Q, Goodman KJ, Giussani DA, Nathanielsz PW, Brenna JT (1996) Linoleate, alpha-linolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys. J Lipid Res 37:2675–2686PubMedGoogle Scholar
  42. Sinclair AJ (1975) Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rats. Lipids 10:175–184. doi: 10.1007/BF02534156 PubMedCrossRefGoogle Scholar
  43. Su HM, Bernardo L, Mirmiran M, Ma XH, Corso TN, Nathanielsz PW et al (1999) Bioequivalence of dietary-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatr Res 45:87–93. doi: 10.1203/00006450-199901000-00015 PubMedCrossRefGoogle Scholar
  44. Tacon AGJ, Jackson AJ (1985) Utilization of conventional and unconventional protein sources in practical fish feeds. In: Cowey CB, Mackie A, Bell J (eds) Nutrition and feeding in fish. Academic Press, London, pp 119–145Google Scholar
  45. Tocher DR (1993) Elongation predominates over desaturation in the metabolism of 18:3n − 3 and 20:5n − 3 in turbot (Scophthalmus maximus) brain astroglial cells in primary culture. Lipids 28:267–272. doi: 10.1007/BF02536309 PubMedCrossRefGoogle Scholar
  46. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184. doi: 10.1080/713610925 CrossRefGoogle Scholar
  47. Tocher DR, Sargent JR (1990) Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14C-labelled (n − 3) and (n − 6) polyunsaturated fatty acids in trout astrocytes in primary culture. J Neurochem 54:2118–2124. doi: 10.1111/j.1471-4159.1990.tb04918.x PubMedCrossRefGoogle Scholar
  48. Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol B 73:3–15CrossRefGoogle Scholar
  49. Williard DE, Harmon SD, Kaduce TL, Preuss M, Moore SA, Robbins ME et al (2001) Docosahexaenoic acid synthesis from n − 3 polyunsaturated fatty acids in differentiated rat brain astrocytes. J Lipid Res 42:1368–1376PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. D. Noffs
    • 1
  • R. C. Martino
    • 2
  • L. C. Trugo
    • 1
  • E. C. Urbinati
    • 3
  • J. B. K. Fernandes
    • 3
  • L. S. Takahashi
    • 3
  1. 1.Instituto de Química (CT)Universidade Federal do Rio de Janeiro–Laboratório de Bioquímica Nutricional e de AlimentosRio de JaneiroBrazil
  2. 2.Fundação Instituto de Pesca do Estado do Rio de JaneiroUnidade de Tecnologia do PescadoRio de JaneiroBrazil
  3. 3.Centro de Aqüicultura da UNESP (CAUNESP)Universidade do Estado de São PauloJaboticabalBrazil

Personalised recommendations