Fish Physiology and Biochemistry

, Volume 35, Issue 1, pp 29–42 | Cite as

Fishes of southern South America: a story driven by temperature

  • V. E. CussacEmail author
  • D. A. Fernández
  • S. E. Gómez
  • H. L. López


The latitudinal extension of southern South America imposes a thermal gradient that affects the structure of marine and freshwater fish assemblages and the biology of the species through direct exposure to the temperature gradients or by means of a web of historical and ecological relationships. We have reviewed biological and ecological data of marine and freshwater fishes from the southern Neotropics, including Patagonia, and report several examples of dependence on temperature, from glacial times to today’s climate change. We were able to identify historic and present effects on the diversity of fish assemblages, isolation, southern limits for the distribution of species, and morphological variation among populations. There is a wide range of characteristics that exemplify an adaptation to low temperatures, including biochemical peculiarities, physiological adjustments, and alternative life history patterns, and these appear in both freshwater and marine, and native and exotic fishes. The consequences of stable temperature regimes in both the ocean and thermal streams deserve special mention as these shape specialists under conditions of low selective pressure. At present, habitat use and interactions among species are being subject to changes as consequences of water temperature, and some of these are already evident in the northern and southern hemispheres.


Austral subregion Autoecology Biodiversity Ecophysiology Freshwater Marine Neotropical region Thermal biology 



We thank the editors for providing us with a vehicle to promote some of our views. We would like to acknowledge the following institutions for granting previous and present projects that have enabled the elaboration of these ideas: Universidad Nacional del Comahue, CONICET and FONCYT (Argentina), Ministerio de Educación y Ciencia and Agencia Española de Cooperación Internacional (Grant CGL2004-01716, AECI, Spain), National Geographic Society (USA), and the NSF-PIRE award (OISE 0530267, USA) for support of collaborative research on Patagonian Biodiversity granted to the following institutions (listed alphabetically): Brigham Young University, Centro Nacional Patagónico, Dalhousie University, Darwinion Botanical Institute, Universidad Austral de Chile, Universidad Nacional del Comahue, Universidad de Concepción, and University of Nebraska. Justina Ponte Gómez kindly helped us with Fig. 1.


  1. Acierno R, MacDonald JA, Agnisola C et al (1995) Blood volume in the hemoglobinless Antarctic teleost Chionodraco hamatus (Lönnberg). J Exp Zool 272:407–409CrossRefGoogle Scholar
  2. Aigo J, Cussac V, Peris S et al (2008) Distribution of introduced and native fish in Patagonia (Argentina): patterns and changes in fish assemblages. Rev Fish Biol Fish. doi: 10.1007/s11160-007-9080-8
  3. Baigún C, Ferriz R (2003) Distribution patterns of native freshwater fishes in Patagonia, Argentina. Org Divers Evol 3:151–159CrossRefGoogle Scholar
  4. Balon EK (1990) Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyol Rev 1:1–48Google Scholar
  5. Barriga JP, Battini MA, Cussac VE (2007) Annual dynamics variation of landlocked Galaxias maculatus (Jenyns 1842) population in a northern Patagonia river: occurrence of juvenile upstream migration. J Appl Ichthyol 23:128–135CrossRefGoogle Scholar
  6. Battram JC, Johnston IA (1991) Muscle growth in the Antarctic teleost, Nothothenia neglecta (Nybelin). Antarct Sci 3:29–33CrossRefGoogle Scholar
  7. Becker LA, Pascual MA, Basso NG (2007) Colonization of the Southern Patagonia ocean by exotic Chinook Salmon. Cons Biol 21:1347–1352CrossRefGoogle Scholar
  8. Boy CC, Morriconi E, Calvo J (2007) Reproduction in puyen, Galaxias maculatus (Pisces: Galaxiidae), in the southernmost extreme of distribution. J Appl Ichthyol 23:547–554CrossRefGoogle Scholar
  9. Buria L, Walde SJ, Battini M et al (2007) Movement of a South American perch Percichthys trucha in a mountain Patagonian lake during spawning and prespawning periods. J Fish Biol 70:215–230CrossRefGoogle Scholar
  10. Campos H, Gavilán JF, Murillo V et al (1996) Presencia de Cheirodon australe (Pisces: Characidae) en Lago Tarahuin (Isla Grande de Chiloé, 42–40°S, Chile) y su significado zoogeográfico. Med Amb 13:69–79Google Scholar
  11. Cervellini PM, Battini MA, Cussac VE (1993) Ontogenetic shifts in the feeding of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atherinidae). Environ Biol Fish 36:283–290CrossRefGoogle Scholar
  12. Chapman A, Morgan DL, Beatty SJ et al (2006) Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ Biol Fish 77:21–37CrossRefGoogle Scholar
  13. Cheng CC, Detrich HW 3rd (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc London 362:2215–2232CrossRefGoogle Scholar
  14. Cheng CC, DeVries AL (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G (ed) Life under extreme conditions. G. d. Prisco/Springer, Berlin, HeidelbergGoogle Scholar
  15. Ciancio JE, Pascual MA, Lancelotti J et al (2005) Natural colonization and establishment of a chinook salmon, Oncorhynchus tshawytscha, population in the Santa Cruz River, an Atlantic basin of Patagonia. Environ Biol Fish 74:219–227CrossRefGoogle Scholar
  16. Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. TREE 11:212–217Google Scholar
  17. Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905CrossRefGoogle Scholar
  18. Cocca E, Ratnayake-Lecamwasam M, Parker SK et al (1995) Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821PubMedCrossRefGoogle Scholar
  19. Conover D, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. TREE 10:248Google Scholar
  20. Cordi V, Ortubay S, Lozada M (2005) Visual cues during the alarm reaction of Gymnocharacinus bergi (Pisces, Characidae). J Appl Ichthyol 21:487–491CrossRefGoogle Scholar
  21. Cussac VE, Cervellini PM, Battini MA (1992) Intralacustrine movements of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atherinidae) during their early life history. Environ Biol Fish 35:141–148CrossRefGoogle Scholar
  22. Cussac VE, Ruzzante D, Walde S et al (1998) Body shape variation of three species of Percichthys in relation to their coexistence in the Limay river basin, in Northern Patagonia. Environ Biol Fish 53:143–153CrossRefGoogle Scholar
  23. Cussac V, Ortubay S, Iglesias G et al (2004) The distribution of South American galaxiid fishes: the role of biological traits and post glacial history. J Biogeogr 31:103–122Google Scholar
  24. di Prisco G, Cocca E, Parker S et al (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191PubMedCrossRefGoogle Scholar
  25. Dunn JF, Archer SD, Johnston IA (1989) Muscle fibre types and metabolism in post-larval and adult stages of Notothenoid fish. Pol Biol 9:213–223CrossRefGoogle Scholar
  26. Dyer B (2000) Systematic review and biogeography of the freshwater fishes of Chile. Estud Oceanol 19:77–98Google Scholar
  27. Eastman JT (1993) Antarctic fish biology: evolution in an unique environment. Academic Press, New YorkGoogle Scholar
  28. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Pol Biol 28:93–107CrossRefGoogle Scholar
  29. Eastman JT, Eakin R (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20Google Scholar
  30. Egginton S, Skilbeck C, Hoofd L et al (2002) Peripheral oxygen transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. J Exp Biol 205:769–779PubMedGoogle Scholar
  31. Elliot JM (1981) Some aspects of thermal stress on freshwater teleosts. In: Pickering AD (ed) Stress and fish. Academic Press, LondonGoogle Scholar
  32. Fernández DA, Calvo J, Abercromby M et al (2000) Muscle fibre types and size distribution in sub-antarctic notothenioid fishes. J Fish Biol 56:1295–1311CrossRefGoogle Scholar
  33. Fernández DA, Calvo J, Wakeling J et al (2002) Escape performance in the sub-Antarctic notothenioid fish Eleginops maclovinus. Pol Biol 25:914–920Google Scholar
  34. Fernández DA, Calvo J, Johnston IA (2005) Muscle growth in Antarctic and sub-Antarctic notothenioid fishes. Sci Mar 69:325–336CrossRefGoogle Scholar
  35. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613Google Scholar
  36. Freyre LR, Protogino L (1993) Dos modelos de metabolismo energético de peces de agua dulce de Argentina. Gayana Zool 57:47–55Google Scholar
  37. Fry FEJ (1971) Effects of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New YorkGoogle Scholar
  38. Gagnon MC, Angers B (2006) The determinant role of temporary proglacial drainages on the genetic structure of fishes. Mol Ecol 15:1051–1065PubMedCrossRefGoogle Scholar
  39. Gómez SE (1990) Some thermal ecophysiological observations on the catfish Hatcheria macraei (Girard 1855) (Siluriformes, Trichomycteridae). Biota 6:89–95Google Scholar
  40. Gómez SE (1996) Resistenza alla temperatura e salinitá in pesci della Provincia di Buenos Aires (Argentina), con implicazioni zoogeografiche. In: Paper IV Convegno Nazionale Associazione Italiana Ittiologi Acque Dolci. TrentoGoogle Scholar
  41. Gómez SE, Ferriz RA (1998) Una hipótesis de trabajo sobre la biología del pejerrey en la dinámica de las lagunas pampásicas. In: Ministerio de Asuntos Agrarios (ed) Primer Taller integral sobre el recurso pejerrey en la Provincia de Buenos Aires. La PlataGoogle Scholar
  42. Gómez SE, Ferriz RA (2001) Algunos aspectos de la ecofisiología del pejerrey. In: Grosman F (ed) Fundamentos biológicos, económicos y sociales para una correcta gestión del recurso pejerrey. Astyanax, AzulGoogle Scholar
  43. Gómez SE, Gonzalez Naya MJ (2007) Resistencia a la salinidad en dos especies de peces Neotropicales de la familia Cichlidae (Pisces, Perciformes). Mem Fundación La Salle de Ciencias Naturales 166:45–54Google Scholar
  44. Gómez SE, Menni RC (2005) Cambio ambiental y desplazamiento de la ictiofauna en el Oeste de la Pampasia (Argentina Central). Biol Acuát 22:151–156Google Scholar
  45. Gómez SE, Trenti PS, Menni RC (2004) New fish populations as evidence of climate change in former dry areas of the Pampa Region (Southern South America). Physis 59:43–44Google Scholar
  46. Gómez SE, Menni RC, Gonzalez Naya MJ et al (2007) The physical chemical habitat of the Buenos Aires pejerrey, Odontesthes bonariensis (Teleostei, Atherinopsidae), with a proposal of a water quality index. Environ Biol Fish 78:161–171CrossRefGoogle Scholar
  47. Gooseff MN, Strzepek K, Chapra SC (2005) Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, lower Madison River, MT. Climate Change 68:331–353CrossRefGoogle Scholar
  48. Gosztonyi AE (1974) Edad y crecimiento del róbalo Eleginops maclovinus (Osteichthyes, Nototheniidae) en aguas de la ria Deseado y sus adyacencias. Physis 33:1–8Google Scholar
  49. Gross MR, Coleman RM, McDowall RM (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1217–1348CrossRefGoogle Scholar
  50. Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427PubMedCrossRefGoogle Scholar
  51. Hattori RS, Gould RJ, Fujioka T et al (2007) Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sex Dev 1:138–146PubMedCrossRefGoogle Scholar
  52. Hill RW, Wyse GA, Anderson M (2006) Fisiología animal. Editorial Médica Panamericana, Buenos AiresGoogle Scholar
  53. Hofmann GE, Buckley BA, Airasinen S et al (2000) Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339PubMedGoogle Scholar
  54. Hubert N, Renno J-F (2006) Historical biogeography of South American freshwater fishes. J Biogeogr 33:1414–1436CrossRefGoogle Scholar
  55. Jansen W, Hesslein RH (2004) Potential effects of climate warming on fish habitats in temperate zone lakes with special reference to Lake 239 of the experimental lakes area, north western Ontario. Environ Biol Fish 70:1–22CrossRefGoogle Scholar
  56. Johnston IA (1993) Phenotypic plasticity of fish muscle to temperature change. In: Rankin J (ed) Fish ecophysiology. Chapman&Hall, LondonGoogle Scholar
  57. Johnston IA, Camm JP, White M (1988) Specialisations of swimming muscles in the pelagic Antarctic fish Pleuragramma antarcticum. Mar Biol 100:3–12CrossRefGoogle Scholar
  58. Johnston IA, Calvo J, Guderley H et al (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12PubMedGoogle Scholar
  59. Johnston IA, Fernández DA, Calvo J et al (2003) Reduction in muscle fibre number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective. J Exp Biol 206:2595–2609PubMedCrossRefGoogle Scholar
  60. Johnston IA, Abercromby M, Vieira VL et al (2004) Rapid evolution of muscle fibre number in post-glacial populations of Arctic charr Salvelinus alpinus. J Exp Biol 207:4343–4360PubMedCrossRefGoogle Scholar
  61. Kangur A, Kangur P, Kangur K et al (2007) The role of temperature in the population dynamics of smelt Osmerus eperlanus eperlanus m. spirinchus Pallas in Lake Peipsi (Estonia/Russia). Hydrobiología 584:433–441Google Scholar
  62. Kinsey ST, Pathi P, Hardy KM et al (2005) Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle? J Exp Biol 208:2641–2652PubMedCrossRefGoogle Scholar
  63. Körber S, Ortubay S (2004) Literature published on the naked tetra Gymnocharacinus bergii (Characiformes: Characidae: Gymnocharacinae) from Patagonia, Argentina. Z Fischkunde 7:5–8Google Scholar
  64. Langecker T, Longley G (1993) Morphological adaptations of the Texas blind catfishes Trogloglanis pattersoni and Satan eurystomus (Siluriformes: Ictaluridae) to their underground environment. Copeia 1993:976–986CrossRefGoogle Scholar
  65. Lattuca ME, Ortubay S, Battini MA et al (2007) Presumptive environmental effects on body shape of Aplochiton zebra (Pisces, Galaxiidae) in Northern Patagonian lakes. J Appl Ichthyol 23:25–33CrossRefGoogle Scholar
  66. Lattuca ME, Brown D, Castiñeira L et al (2008) Reproduction of landlocked Aplochiton zebra Jenyns (Pisces, Galaxiidae). Ecol Freshw Fish. doi: 10.1111/j.1600-0633.2008.00292.x
  67. Liotta J (2006) Distribución geográfica de los peces continentals de la República Argentina. Serie Documentos N°3, ProBiota. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La PlataGoogle Scholar
  68. Logan MS, Iverson SJ, Ruzzante DE et al (2000) Long term diet differences between morphs in trophically polymorphic Percichthys trucha (Pisces: Percichthyidae) populations from the southern Andes. Biol J Linn Soc 69:599–616Google Scholar
  69. López HL, Miquelarena AM (2005) Biogeografía de los peces continentales de la Argentina. In: Llorente Bousquets J, Morrone JJ (eds) Regionalización biogeográfica en Iberoamérica y tópicos afines. Red Iberoamericana de Biogeografía y entomología sistemática (RIBES XII.I-CYTED), Mexico City Google Scholar
  70. López HL, García ML, Togo C (1991) Bibliografía de los pejerreyes argentinos de agua dulce. CIC, La PlataGoogle Scholar
  71. López HL, Morgan CC, Montenegro MJ (2002) Ichthyological ecoregions of Argentina. ProBiota, Serie Documentos N° 1, Universidad Nacional de La PlataGoogle Scholar
  72. López HL, Miquelarena AM, Ponte Gómez J (2005) Biodiversidad y Distribución de la Ictiofauna Mesopotámica. In: Aceñolaza FG (ed) Temas de la Biodiversidad del Litoral Fluvial Argentino II. Univesidad Nacional del Tucumán, San Miguel Google Scholar
  73. López-Arbarello A (2004) Taxonomy of the genus Percichthys (Perciformes: Percichthyidae). Ichthyol Explor Freshw 15:331–350Google Scholar
  74. Lozada M, Ortubay S, Cussac V (2000) Fright reaction in Gymnocharacinus bergi (Pisces, Characidae), a relic fish from Patagonia. Environ Biol Fish 58:227–232CrossRefGoogle Scholar
  75. Macchi PJ, Cussac VE, Alonso MF et al (1999) Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in Northern Patagonia. Ecol Freshw Fish 8:227–2360CrossRefGoogle Scholar
  76. Macchi PJ, Pascual MA, Vigliano PH (2007) Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica 37:76–87Google Scholar
  77. McDowall RM (1971) The galaxiid fishes of South America. Zool J Linn Soc 50:33–74CrossRefGoogle Scholar
  78. McDowall RM (1980) Freshwater fishes and plate tectonics in the southwest Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 31:337–351CrossRefGoogle Scholar
  79. McDowall RM (2001) Diadromy, diversity and divergence: implications for speciation processes in fishes. Fish Fish 2:278–285Google Scholar
  80. McDowall RM (2003) Variation in vertebral number in galaxiid fishes (Teleostei: Galaxiidae): a legacy of life history, latitude and length. Environ Biol Fish 66:361–381CrossRefGoogle Scholar
  81. Meisner JD, Shuter BJ (1992) Assessing potential effects of global climate change on tropical freshwater fishes. GeoJournal 28:21–27CrossRefGoogle Scholar
  82. Menni RC (2004) Peces y ambientes en la Argentina continental. Monogr Mus Argentino Cienc Nat 5:1–316Google Scholar
  83. Menni RC, Gómez SE (1995) On the habitat and isolation of Gymnocharacinus bergi (Pisces, Characidae). Environ Biol Fish 42:15–23CrossRefGoogle Scholar
  84. Menni RC, Ringuelet RA, Arámburu RA (1984) Peces marinos de la Argentina y Uruguay. Editorial Hemisferio Sur, Buenos AiresGoogle Scholar
  85. Menni RC, Gómez SE, López Armengol F (1996) Subtle relationships: freshwater fishes and water chemistry in southern South America. Hydrobiologia 328:173–197CrossRefGoogle Scholar
  86. Menni RC, Miquelarena AM, Gómez SE (1998) Fish and limnology of a thermal water environment in subtropical South America. Environ Biol Fish 51:165–283CrossRefGoogle Scholar
  87. Milano D (2003) Biología de Galaxias platei (Pisces, Galaxiidae): especializaciones relativas a su distribución. PhD thesis. Universidad Nacional del Comahue, Buenos AiresGoogle Scholar
  88. Milano D, Cussac VE, Macchi PJ et al (2002) Predator associated morphology in Galaxias platei in Patagonian lakes. J Fish Biol 61:138–156CrossRefGoogle Scholar
  89. Milano D, Ruzzante DE, Cussac VE et al (2006) Latitudinal and ecological correlates of morphological variation in Galaxias platei (Pisces, Galaxiidae) in Patagonia. Biol J Linn Soc 87:69–82CrossRefGoogle Scholar
  90. Miquelarena A (1982) Estudio comparado del esqueleto caudal en peces Characoideos de la República Argentina II. Familia Characidae Limnobios 2:277–304Google Scholar
  91. Miquelarena A, Arámburu R (1983) Osteología y lepidología de Gymnocharacinus bergi (Pisces, Characidae). Limnobios 2:491–512Google Scholar
  92. Miquelarena A, Ortubay S, Cussac V (2005) Morphology, osteology and reductions in the ontogeny of the scaleless characid Gymnocharacinus bergi. J Appl Ichthyol 21:510–518CrossRefGoogle Scholar
  93. Montgomery J, Clements K (2000) Disaptation and recovery in the evolution of Antarctic fishes. TREE 15:267–271PubMedGoogle Scholar
  94. Moylan TJ, Sidell BD (2000) Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol 203:1277–1286PubMedGoogle Scholar
  95. Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44CrossRefGoogle Scholar
  96. Near TJ, Parker SK, Detrich HW 3rd (2006) A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes. Mol Biol Evol 23:2008–2016PubMedCrossRefGoogle Scholar
  97. Ortubay S, Cussac V (2000) Threatened fishes of the world: Gymnocharacinus bergi Steindachner, 1903 (Characidae). Environ Biol Fish 58:144–144CrossRefGoogle Scholar
  98. Ortubay SG, Gómez SE, Cussac VE (1997) Lethal temperatures of a Neotropical fish relic in Patagonia, the scale-less characinid Gymnocharacinus bergi Steindachner 1903. Environ Biol Fish 49:341–350CrossRefGoogle Scholar
  99. Ortubay S, Lozada M, Cussac V (2002) Aggressive behaviour between Gymnocharacinus bergi (Pisces, Characidae) and other Neotropical fishes from a thermal stream in Patagonia. Environ Biol Fish 63:341–346CrossRefGoogle Scholar
  100. Ortubay S, Cussac V, Battini M et al (2006) Is the decline of birds and amphibians in a steppe lake of northern Patagonia a consequence of limnological changes following fish introduction? Aquat Conserv 16:93–105CrossRefGoogle Scholar
  101. Pascual MA, Ciancio JE (2007) Introduced anadromous salmonids in Patagonia: risks, uses, and a conservation paradox. In: Bert T (ed) Ecological and genetic implications of aquaculture activities. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  102. Pascual M, Bentzen P, Riva Rossi C et al (2001) First documented case of anadromy in a population of introduced rainbow trout in Patagonia. Argentina Trans Am Fish Soc 130:53–67CrossRefGoogle Scholar
  103. Pascual M, Macchi P, Urbanski J et al (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence–absence data. Biol Invasions 4:101–113CrossRefGoogle Scholar
  104. Pascual MA, Cussac V, Dyer B et al (2007) Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health Manage 10:212–227CrossRefGoogle Scholar
  105. Pequeño G (1989) The geographical distribution and taxonomic arrangement of South American Nototheniid fishes (Osteichthyes, Nototheniidae). Bol Soc Biol Conc 60:183–200Google Scholar
  106. Peters N (1990) Evolution without selection: quantitative aspects of the eye rudimentation in cave fishes. Mém Biospéleol 17:43–48Google Scholar
  107. Peters N, Peters G (1983) Genetic problems in the regressive evolution of cavernicolous fish. In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, Berlin Heidelberg New YorkGoogle Scholar
  108. Peters N, Schacht V, Schmidt W et al (1993) Gehirnproportionen und Auspra¨ gungsgrad der Sinnesorgane von Astyanax mexicanus (Pisces, Characinidae). Z Zool Syst Evolut-forsch 31:144–159Google Scholar
  109. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97PubMedCrossRefGoogle Scholar
  110. Quirós R (1991) Factores que afectan la distribución de salmónidos en Argentina. COPESCAL, FAO, Documento Técnico 9:163–173Google Scholar
  111. Quirós R, Drago E (1985) Relaciones entre variables físicas, morfométricas y climáticas en lagos patagónicos. Rev Asoc Cs Nat Litoral 16:181–199Google Scholar
  112. Quirós R, Vidal JC (2000). Cyclic behaviour of potamodromous fish in large river. In: Cowx IG (ed) Management and ecology of river fisheries. Fishing News Book, Blackwell Science, Oxford, pp 71–86Google Scholar
  113. Ringuelet RA (1955) Panorama zoogeográfico de la provincia de Buenos Aires. Notas Mus La Plata Zool 18:1–15Google Scholar
  114. Ringuelet RA (1962) Ecología acuática continental. EUDEBA, Buenos AiresGoogle Scholar
  115. Ringuelet RA (1975) Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur. Ecosur 2:1–122Google Scholar
  116. Ringuelet RA, Arámburu RH, Alonso de Arámburu A (1967) Los peces argentinos de agua dulce. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La PlataGoogle Scholar
  117. Roessig JM, Woodley CM, Cech Jr JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275CrossRefGoogle Scholar
  118. Romero A, Sing A, McKie A et al (2002) Replacement of the troglomorphic population of Rhamdia quelen (Pisces: Pimelodidae) by an epigean population of the same species in the Cumaca cave, Trinidad, West Indies. Copeia 2002:938–942CrossRefGoogle Scholar
  119. Ruzzante DE, Walde SJ, Cussac VE et al (1998) Trophic polymorphism, habitat and diet segregation in Percichthys trucha (Pisces: Percichthyidae) in the Andes. Biol J Linn Soc 65:191–214Google Scholar
  120. Ruzzante DE, Walde SJ, Cussac VE et al (2003) Resource polymorphism in a Patagonian fish Percichthys trucha (Percichthyidae): phenotypic evidence for interlake pattern variation. Biol J Linn Soc 78:497–515CrossRefGoogle Scholar
  121. Ruzzante DE, Walde SJ, Cussac VE et al (2006) Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 15:2949–2968PubMedCrossRefGoogle Scholar
  122. Ruzzante DE, Walde SJ, Gosse JC et al (2008) Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography. Mol Ecol. doi: 10.1111/j.1365-294X.2008.03738.x
  123. Shuter BJ, Post JR (1990) Climate, population viability, and the zoogeography of temperate fishes. Trans Am Fish Soc 119:314–336CrossRefGoogle Scholar
  124. Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802PubMedCrossRefGoogle Scholar
  125. Smialowska E, Kilarsky W (1981) Histological analysis of fibres in myotomes of Antarctic fish (Admiralty Bay, King George Islands, South Shetland Islands) I. Comparative analysis of muscle fibre sizes. Pol Pol Res 2:109–129Google Scholar
  126. Soto D, Arismendi I, Di Prinzio C et al (2007) Establishment of Chinook salmon (Oncorhynchus tshawytscha) in Pacific basins of southern South America and its potential ecosystem implications. Rev Chil Hist Nat 80:81–98Google Scholar
  127. Steffensen JF (2002) Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol A Mol Integr Physiol 132:789–795PubMedCrossRefGoogle Scholar
  128. Strüssmann CA, Akaba T, Ijima K et al (1997a) Spontaneous hybridization in the laboratory and genetic markers for the identification of hybrids between two atherinid species, Odontesthes bonariensis (Valenciennes, 1835) and Patagonina hatcheri (Eigenmann, 1909). Aquacult Res 28:291–300CrossRefGoogle Scholar
  129. Strüssmann CA, Saito T, Usui M et al (1997b) Thermal thresholds and critical period of thermolabile sex determination in two atherinid fishes, Odontesthes bonariensis and Patagonina hatchery. J Exp Zool 278:167–177CrossRefGoogle Scholar
  130. Sverlij SB, Espinach Ros A, Ortí G (1993) Sinopsis de los datos biológicos y pesqueros del sábalo Prochilodus lineatus (Valenciennes 1847). FAO-FIR S154:1–64Google Scholar
  131. Tota B, Cerra MC et al (1997) The heart of the antarctic icefish as paradigm of cold adaptation. J Thermal Biol 22:409CrossRefGoogle Scholar
  132. Trajano E (1997) Threatened fishes of the world: Pimelodella kronei (Ribeiro, 1907) (Pimelodidae). Environ Biol Fish 49:332CrossRefGoogle Scholar
  133. Trenti PS, Gómez SE, Ferriz RA (1999) Capacidad de natación en tres peces pampásicos. Aprona 38:2–9Google Scholar
  134. Tsuzuki MY, Aikawa H, Strüssmann CA et al (2000) Comparative survival and growth of embryos\larvae\and juveniles of pejerrey Odontesthes bonariensis and O. hatchery at different salinities. J Appl Ichthyol 16:126–130CrossRefGoogle Scholar
  135. Wetzel RG (1983) Limnology, 2nd edn. Saunders College Publ, PhiladelphiaGoogle Scholar
  136. Wilson RS, Franklin CE, Davison W et al (2001) Stenotherms at sub-zero temperature: thermal dependence of swimming performance in Antarctic fish. J Comp Physiol B 171:263–269PubMedCrossRefGoogle Scholar
  137. Wilson RS, Kuchela LJ, Franklin CE et al (2002) Turning up the heat on subzero fish: thermal dependence of sustained swimming in an Antarctic notothenioid. J Therm Biol 27:381–386CrossRefGoogle Scholar
  138. Zattara EE, Prémoli AC (2005) Genetic structuring in Andean landlocked populations of Galaxias maculatus:effects of biogeographic history. J Biogeogr 32:5–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. E. Cussac
    • 1
    Email author
  • D. A. Fernández
    • 2
  • S. E. Gómez
    • 3
  • H. L. López
    • 4
  1. 1.Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA)Universidad Nacional del Comahue–CONICETBarilocheArgentina
  2. 2.Centro Austral de Investigaciones Centificas (CADIC)–CONICETUshuaiaArgentina
  3. 3.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICETBuenos AiresArgentina
  4. 4.Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La Plata–CICBuenos AiresArgentina

Personalised recommendations