Advertisement

Fish Physiology and Biochemistry

, Volume 34, Issue 4, pp 367–372 | Cite as

Long-term culture of a cell population from Siberian sturgeon (Acipenser baerii) head kidney

  • P. Ciba
  • S. Schicktanz
  • E. Anders
  • E. Siegl
  • A. Stielow
  • E. Klink
  • C. Kruse
Article

Abstract

In vitro cultures of native fish cell lines are of great importance, both for basic research and applied science. In particular, there is strong demand for long-term growable cell lines from breeding fish, like sturgeon. Here, we describe the culture of cells from Siberian sturgeon (Acipenser baerii) head kidney. The cells have so far been cultured over a period of 12 months (24 passages). Cytochemical and immunocytochemical examination suggests that, in vitro, the cells exhibit markers that are indicative for different cell types. In particular, fat storing cells (adipocytes) were observed, and the expression of cytokeratins and glial fibrilar acidic protein (GFAP) can be concluded on the basis of immuncytochemical analysis. The observation of different morphologies additionally underlines the heterogeneity of the cell population and matches the typical behaviour of in vitro cultures of stem/progenitor cells. Different applications can be imagined.

Keywords

Aquaculture Cell culture Fish In vitro Progenitor cells Pronephros Stem cells Test system 

Notes

Acknowledgments

This work was supported by grants of WTSH (Wirtschaftsförderung und Technologietransfer Schleswig-Holstein). The authors would like to thank Dr. Daniel Rapoport and Mrs. Jennifer Kajahn for the revision of the manuscript.

References

  1. Braun-Nesje R, Kapplan G, Seljelid R (1982) Rainbow trout macrophages in vitro: Morphology and phagocytic activity. Dev Comp Immunol 6:281–291PubMedCrossRefGoogle Scholar
  2. Catton WT (1951) Blood cell formation in certain teleost fishes. Blood 6: 39–60PubMedGoogle Scholar
  3. Dishon A, Perelberg A, Bisharan-Shieban J, Ilouze M, Davidovich M, Werker S, Kotler M (2005) Detection of carp interstitial nephritis and gill necrosis virus in fish droppings. Appl Environ Microbiol 71:7285–7291PubMedCrossRefGoogle Scholar
  4. Fänge R (1986) Lymphoid organs in sturgeons (Acipenseridae). Vet Immunol Immunopathol 12:153–161PubMedCrossRefGoogle Scholar
  5. Friedenstein AJ (1991) Osteogenic stem cells in the bone marrow. Bone Miner 7:243–272Google Scholar
  6. Holen E, Hamre K (2004) Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus. Fish Physiol Biochem 29:245–252CrossRefGoogle Scholar
  7. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2007) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 447(7146):880–881CrossRefGoogle Scholar
  8. Joerink M, Ribeiro CMS, Stet RJM, Hermsen T, Savelkoul HFJ, Wiegertjes GF (2006) Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. J Immunol 177(1):61PubMedGoogle Scholar
  9. Kruse C, Grunweller A, Notbohm H, Kugler S, Purschke WG, Muller PK (1996) Evidence for a novel cytoplasmatic tRNA-protein complex containing the KH-multidomain protein vigilin. Biochem J 320:247–252PubMedGoogle Scholar
  10. Kruse C, Birth M, Rohwedel J, Assmuth K, Goepel A, Wedel T (2004) Pluripotency of adult stem cells derived from human and rat pancreas. Appl Phys A 79:1617–1624CrossRefGoogle Scholar
  11. Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behaviour of haematopoietic stem cells. Cell 45(6):917–927PubMedCrossRefGoogle Scholar
  12. Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36PubMedCrossRefGoogle Scholar
  13. Serafini M, Verfaillie CM (2006) Pluripotency in adult stem cells: state of the art. Semin Reprod Med 24(5):379–388, ReviewPubMedCrossRefGoogle Scholar
  14. Siegl E, Albrecht S, Lüdtke B (1993) Long-term liquid culture of haematopoietic precursor cells from the head kidney and spleen of the rainbow trout (oncorhynchus mykiss). Comp Haematol Int 3:168–173CrossRefGoogle Scholar
  15. Zapata A, Amemiya CT (2000) Phylogeny of lower vertebrates and their immunological structures. Curr Top Microbiol Immunol 248:67–107PubMedGoogle Scholar
  16. Zapata AG, Chiba A, Varos A (1997) Cells and tissues of the immune system of fish. In: Iwama G, Nakanishi T (eds) The fish immune system organism, pathogen and environment. Academic Press, San Diego, pp 1–61CrossRefGoogle Scholar
  17. Zuasti A, Ferrer C (1989) Haematopoiesis in the head kidney of Sparus auratus. Arch Histol Cytol 52:249–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Ciba
    • 1
  • S. Schicktanz
    • 1
  • E. Anders
    • 2
  • E. Siegl
    • 3
  • A. Stielow
    • 3
  • E. Klink
    • 1
  • C. Kruse
    • 1
  1. 1.Fraunhofer Institute for Marine BiotechnologyFraunhofer SocietyLuebeckGermany
  2. 2.Research Institute for Agriculture and FisheryMecklenburg-VorpommernBorn/DarßGermany
  3. 3.Institute for BiosciencesThe University of RostockRostockGermany

Personalised recommendations