Advertisement

Fish Physiology and Biochemistry

, Volume 32, Issue 4, pp 305–315 | Cite as

Characterization of copper, zinc superoxide dismutase from a cartilaginous shark species, Scyliorhinus torazame (Carcharhiniformes)

  • Yoon Kwon NamEmail author
  • Young Sun Cho
  • Keun-Yong Kim
  • In Chul Bang
  • Ki Hong Kim
  • Sung Koo Kim
  • Dong Soo Kim
Original Paper

Abstract

A full-length complementary DNA clone encoding copper, zinc superoxide dismutase (Cu, Zn-SOD), a key antioxidant enzyme, was isolated from the evolutionary lower vertebrate shark species, Scyliorhinus torazame. The shark SOD cDNA comprised 30 bp of 5′-untranslated region (UTR), 456 bp of a single open reading frame (ORF) encoding 152 amino acids and 401 bp of 3′-UTR, including consensus polyadenylation signal (AATAAA) and 20 bp of poly-(A+) tail. Deduced amino acid sequence of shark SOD shared relatively high identities with those not only from teleosts (57–72%) but also from other advanced vertebrates (53–65%) with intermediate characteristics. In addition, shark SOD represented unique molecular features that were not seen in other vertebrate SODs. The SOD transcripts were expressed ubiquitously in all tissues examined, including brain, intestine, kidney, liver, muscle and spleen, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Acute exposure to cadmium by either injection (0, 1, 2 or 5 mg CdCl2 kg−1 body weight for 2 days) or immersion (0 or 25 μM Cd for 0, 1, 4 and 7 days) altered hepatic SOD mRNA level, based on RNA blot hybridization and semi-quantitative and/or real-time RT-PCR assays. Transcriptional levels of SOD were significantly increased by cadmium exposure generally in a dose- or time-dependent fashion.

Keywords

Cadmium Cu, Zn-SOD cDNA mRNA expression Shark Scyliorhinus torazame 

Notes

Acknowledgment

This work was supported by the Korea Research Foundation (Grant # KRF-2005-202-F00041), Ministry of Education and Human Resources Development, Korea.

References

  1. Almeida JA, Diniz YS, Marques SFG, Faine LA, Ribas BO, Burneiko BC, Novelli ELB (2002) The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis Uniloticus) exposed to in vivo cadmium contamination. Environ Int 27:673–679PubMedCrossRefGoogle Scholar
  2. Ayala FJ (2000) Neutralism and selectionism: the molecular clock. Gene 261:27–33PubMedCrossRefGoogle Scholar
  3. Basha PS, Rani AU (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Saf 56:218–221PubMedCrossRefGoogle Scholar
  4. Blust R, Van der Linden A, Verheyen E, Decleir W (1988) Evaluation of microwave heating digestion and graphite furnace atomic absorption spectrometry with continuum source background correction for the determination of iron, copper and cadmium in brine shrimp. J Anal At Spectrom 3:387–393CrossRefGoogle Scholar
  5. Calabrese L, Polticelli F, O’Neill P, Galtieri A, Barra D, Schinina E, Bosssa F (1989) Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu/Zn superoxide dismutase. FEBS Lett 250:49–52PubMedCrossRefGoogle Scholar
  6. Cho JJ, Kim YT (2002) Sharks: a potential source of antiangiogenic factors and tumor treatments. Mar Biotechnol 4:521–525PubMedCrossRefGoogle Scholar
  7. Cho YS, Choi BN, Ha E-M, Kim KH, Kim SK, Kim DS, Nam YK (2005) Shark, Scyliorhinus torazame metallothionein: cDNA cloning, genomic sequence and expression analysis. Mar Biotechnol 7:350–362PubMedCrossRefGoogle Scholar
  8. Cho YS, Choi BN, Kim KH, Kim SK, Kim DS, Bang IC, Nam YK (2006) Differential expression of Cu/Zn superoxide dismutase mRNA during exposures to heavy metals in rockbream (Oplegnathus fasciatus). Aquaculture 253:667–679CrossRefGoogle Scholar
  9. Ciriolo MR, Battistoni A, Falconi M, Filomeni G, Rotilio G (2001) Role of the electrostatic loop of Cu,Zn superoxide dismutase in the copper uptake process. Eur J Biochem 268:737–742PubMedCrossRefGoogle Scholar
  10. den Hartog GJM, Haenen GRMM, Vegt E, Vijgh WJF, Bast A (2003) Superoxide dismutase: the balance between prevention and induction of oxidative damage. Chem Biol Interact 145:33–39CrossRefGoogle Scholar
  11. Fukuhara R, Tezuka T, Kageyama T (2002) Structure, molecular evolution, and expression of primate superoxide dismutases. Gene 296:99–109PubMedCrossRefGoogle Scholar
  12. Gomi F, Matsuo M (1998) Effects of starving and food restriction on the antioxidant enzymes activity of rat livers. J Gerontol A Biol Sci Med Sci 53:B161–B167PubMedGoogle Scholar
  13. Guecheva TN, Erdtmann B, Benfato MS, Henriques JAP (2003) Stress protein response and catalase activity in freshwater planarian Dugesia (Girardia) schubarti exposed to copper. Ecotoxicol Environ Saf 56:351–357PubMedCrossRefGoogle Scholar
  14. Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol 143C:263–274Google Scholar
  15. Johnson P (2002) Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp Biochem Physiol 133C:493–505Google Scholar
  16. Kikugawa K, Katoh K, Kuraku S, Sakurai H, Ishida O, Iwabe N, Miyata T (2004) Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol 2:3PubMedCrossRefGoogle Scholar
  17. Lee YM, Friedman DJ, Ayala FJ (1985) Superoxide dismutase: an evolutionary puzzle. Proc Natl Acad Sci USA 82:824–828PubMedCrossRefGoogle Scholar
  18. Manduzio H, Monsinjon T, Galap C, Leboulenger F, Rocher B (2004) Seasonal variations in antioxidant defenses in blue mussels Mytilus edulis collected from a polluted area: major contributions in gills of an inducible isoform of Cu/Zn-superoxide dismutase and of glutathione S-transferase. Aquat Toxicol 70:83–93PubMedCrossRefGoogle Scholar
  19. McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension: the role of superoxide anion. Hypertension 34:539–545PubMedGoogle Scholar
  20. Nam YK, Cho YS, Choi BN, Kim KH, Kim SK, Kim DS (2005) Alteration of antioxidant enzymes at the mRNA level during short-term starvation of rockbream Oplegnathus fasciatus. Fish Sci 71:1385–1387CrossRefGoogle Scholar
  21. Nam YK, Cho YS, Douglas SE, Gallant JW, Reith ME, Kim DS (2002) Isolation and transient expression of a cDNA encoding l-gulono-γ-lactone oxidase, a key enzyme for l-ascorbic acid biosynthesis, from the tiger shark Scyliorhinus torazame. Aquaculture 209:271–284CrossRefGoogle Scholar
  22. Pascual P, Pedrajas JR, Toribio F, López-Barea J, Peinado J (2003) Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem Biol Interact 145:191–199PubMedCrossRefGoogle Scholar
  23. Sheader DL, Williams TD, Lyons BP, Chipman JK (2006) Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar Environ Res 62:33–44PubMedCrossRefGoogle Scholar
  24. Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  25. Zelck UE, Janje B, Schneider O (2005) Superoxide dismutase expression and H2O2 production by hemocytes of the trematode intermediate host Lymnaea stagnalis (Gastropoda). Dev Comp Immunol 29:305–314PubMedCrossRefGoogle Scholar
  26. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yoon Kwon Nam
    • 1
    • 2
    Email author
  • Young Sun Cho
    • 1
  • Keun-Yong Kim
    • 1
  • In Chul Bang
    • 3
  • Ki Hong Kim
    • 2
  • Sung Koo Kim
    • 2
  • Dong Soo Kim
    • 1
    • 2
  1. 1.Department of AquaculturePukyong National UniversityBusanKorea
  2. 2.Institute of Marine Living Modified Organisms (IMLMO)Pukyong National UniversityBusanKorea
  3. 3.Department of Marine BiotechnologySoonchunhyang UniversityAsanKorea

Personalised recommendations