Skip to main content

Advertisement

Log in

Experimental Study on the Optimum Concentration of Ferrocene in Composite Ultrafine Dry Powder

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The elimination of halon and frequent fire accidents have caused an urgent need for the development of high-efficient fire extinguishing agents. ABC dry powder has been paid much attention, and has become one of the most extensively used fire extinguishing agents nowadays owing to its wide applications in various fire protection fields. Therefore, to enhance the fire-extinguishing properties of ABC dry powder, ferrocene was used as the additive to develop a new composite ultrafine dry powder based on an ultrafine ABC dry powder product. Through flame inhibition tests, two performance indexes of the inhibition process, namely temperature drops and flame height variations, were adopted to measure the degree of flame suppression. The experimental results revealed that the temperature drops and flame height variations both increased and then decreased. Moreover, the composite ultrafine dry powder containing 0.7% ferrocene displayed the best inhibitory effect with the maximum temperature drop (152.9°C) and variation rate of flame height (14.01%). Thermogravimetric analysis and differential scanning calorimetry were used to analyze the thermal decomposition of the sample powders. Furthermore, based on the analysis results of the thermal decomposition temperature, weight loss, and other thermodynamic parameters of the sample powders, the reasons for performance advantages of composite ultrafine dry powder containing 0.7% ferrocene were clarified as the faster pyrolysis rate, more absorption of heat, stronger suffocation and chemical inhibition effect. Finally, possible speculations on the suppression mechanisms of composite ultrafine dry powder containing 0.7% ferrocene were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wofsy SC, McElroyp MB, Sze ND (1975) Freon consumption: implications for atmospheric ozone. Science 187:535–536. https://doi.org/10.1126/science.187.4176.535

    Article  Google Scholar 

  2. Salawitch RJ, Wofsy SC, McElroy MB (1988) Chemistry of OClO in the Antarctic stratosphere: implications for bromine. Planet Space Sci 36:213–224. https://doi.org/10.1016/0032-0633(88)90058-X

    Article  Google Scholar 

  3. Hamins A, Trees D, Seshadri K (1994) Extinction of nonpremixed flames with halogenated fire suppressants. Combust Flame 99:221–30. https://doi.org/10.1016/0140-6701(95)93665-3

    Article  Google Scholar 

  4. Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34:4. https://doi.org/10.1177/0734904116645829

    Article  Google Scholar 

  5. Gurchumelia L, Bezarashvili G, Chikhradze M et al (2009) Investigation of performance properties of novel composite fire-extinguishing powders based on mineral raw materials. IEEE Trans Eng Manag 64:337–343. https://doi.org/10.2495/MC090321

    Article  Google Scholar 

  6. Sheu GL, Zhang LQ (2009) Powder extinguishing agent and method for manufacturing the same. Patent 20090146098 A1, US

  7. Liu H, Zong R, Gao J et al (2014) A good dry powder to suppress high building fires. APCBEE Proc 9:291–295. https://doi.org/10.1016/j.apcbee.2014.01.052

    Article  Google Scholar 

  8. Kuang K, Chow WK, Ni X et al (2011) Fire suppressing performance of superfine potassium bicarbonate powder. Fire Mater 35(6):353–366. https://doi.org/10.1002/fam.1058

    Article  Google Scholar 

  9. Like J, Moore TA, Mather JD (2000) Handheld fire extinguisher development. In: Paper presented at the Halon options technical working conference (HOTWC), Gaithersburg, MD, NISTSP984, National Institute of Standards and Technology

  10. Brooks J, Berezovsky J, Dwyer MO (2002) Aerosol fire suppression for high rise structural applications via aircraft distribution using metalstorm technologies. In: Paper presented at the Halon options technical working conference (HOTWC), Albuquerque, NM, NISTSP984, National Institute of Standards and Technology

  11. Ewing CT, Faith FR, Hughes JT et al (1989) Flame extinguishment properties of dry chemicals: extinction concentrations for small diffusion pan fires. Fire Technol 25:134–149. https://doi.org/10.1007/BF01041422

    Article  Google Scholar 

  12. Kennington R, Woolhouse RA (1978) Preparation of the reaction product of urea and alkali metal hydroxide or carbonate. Patent US4107053, US

  13. Kuang K, Huang X, Liao G (2008) A comparison between superfine magnesium hydroxide powders and commercial dry powders on fire suppression effectiveness. Process Saf Environ 86:182–188. https://doi.org/10.1016/j.psep.2007.11.002

    Article  Google Scholar 

  14. Huang D, Wang X, Yang J (2015) Influence of particle size and heating rate on decomposition of BC dry chemical fire extinguishing powders. Part Sci Technol. https://doi.org/10.1080/02726351.2015.1013591

    Article  Google Scholar 

  15. Ni X, Kuang K, Yang D et al (2009) A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core–shell structure. Fire Saf J 44:968–975. https://doi.org/10.1016/j.firesaf.2009.06.004

    Article  Google Scholar 

  16. Fleming JW, Reed MD, Zegers EJP et al (1998) Extinction studies of propane/air counterflow diffusion flames: the effectiveness of aerosols. In: Paper presented at the Halon options technical working conference (HOTWC), NIST SP 984, National Institute of Standards and Technology, Gaithersburg, MD, USA

  17. Song F, Du Z, Cong X et al (2014) Experimental study on fires extinguishing properties of melamine phosphate powders. Proc Eng 84:535–542. https://doi.org/10.1016/j.proeng.2014.10.465

    Article  Google Scholar 

  18. McHale BG (2002) Mixed phase fire suppression systems: application and benefits. In: Paper presented at the Halon options technical working conference (HOTWC), NIST SP

  19. Skaggs RR (2002) Assessment of the fire suppression mechanics for HFC-227ea combined with NaHCO3. In: Paper presented in proceedings of the Halon options technical working conference

  20. Morton DAV (1999) Fire suppressant powder. Patent US5938969, US

  21. Linteris GT, Knyazev VD, Babushok VI (2002) Inhibition of premixed methane flames by manganese and tin compounds. Combust Flame 129:221–238. https://doi.org/10.1016/S0010-2180(02)00346-2

    Article  Google Scholar 

  22. Hessler G, Ucan N (2012) Fire extinguishing agent, in particular dry powder mixtures, method for the production thereof and use. Patent EP2496315, EP

  23. Warnock WR, Flatt DV, Eastman JR (1971) Anti-reflash dry chemical agent. Patent US3553127, US

  24. Linteris GT, Rumminger MD, Babushok V et al (2000) Flame inhibition by ferrocene and blends of inert and catalytic agents. In: Paper presented in proceedings of the combustion institute 28(2):2965–2972. https://doi.org/10.1016/S0082-0784(00)80722-5

  25. Marc D, Rumminger MD, Reinelt D et al (1998) Inhibition of flames by iron pentacarbonyl. In: Paper presented at the Halon options technical working conference

  26. Reinelt D, Linteris GT (1996) Experimental study of the flame inhibition effect of iron pentacarbonyl. In: Paper presented at the Halon options technical working conference

  27. Rausch M, Vogel M, Rosenberg H (1957) Ferrocene: a novel organometallic compound. J Chem Educ 34(6):268. https://doi.org/10.1021/ed034p268

    Article  Google Scholar 

  28. Koshiba Y, Iida K, Ohtani H (2015) Fire extinguishing properties of novel ferrocene/surfynol 465 dispersions. Fire Saf J 72:1–6. https://doi.org/10.1016/j.firesaf.2015.02.011

    Article  Google Scholar 

  29. Staude BS, Bergmann U, Atakan B (2011) Experimental and numerical investigations of ferrocene-doped propene flames. Z Phys Chem 225:1179–1192. https://doi.org/10.1524/zpch.2011.0157

    Article  Google Scholar 

  30. Linteris GT, Katta VR, Takahashi F (2004) Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames. Combust Flame 138:78–96. https://doi.org/10.1016/j.combustflame.2004.04.003

    Article  Google Scholar 

  31. Carty P, Grant J, Metcalfe E (2010) Flame-retardancy and smoke-suppression studies on ferrocene derivatives in PVC. Appl Organomet Chem 10(2):101–111. https://doi.org/10.1002/(SICI)1099-0739(199603)10:2%3c101:AID-AOC484%3e3.0.CO;2-7

    Article  Google Scholar 

  32. Rumminger MD, Linteris GT (2002) The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl. Combust Flame 128(1–2):145–164. https://doi.org/10.1016/s0010-2180(01)00341-8

    Article  Google Scholar 

  33. Howard JB, Kausch WJ, Soot T et al (1980) Soot control by fuel additives. Prog Energy Combust Sci 6(3):263–276. https://doi.org/10.1016/0360-1285(80)90018-0

    Article  Google Scholar 

  34. Kasper M, Siegmann K (1998) The influence of ferrocene on PAH synthesis in acetylene and methane diffusion flames. Combust Sci Technol 140(1–6):333–350. https://doi.org/10.1080/00102209808915777

    Article  Google Scholar 

  35. Kasper M, Sattler K, Siegmann K et al (1999) The influence of fuel additives on the formation of carbon during combustion. J Aerosol Sci 30(2):217–225. https://doi.org/10.1016/S0021-8502(98)00034-2

    Article  Google Scholar 

  36. Linteris GT, Rumminger MD, Babushok VI (2008) Catalytic inhibition of laminar flames by transition metal compounds. Prog Energy Combust Sci 34(3):288–329. https://doi.org/10.1016/j.pecs.2007.08.002

    Article  Google Scholar 

  37. Ni X, Kuang K, Wang X et al (2009) A new type of BTP/zeolites nanocomposites as mixed-phase fire suppressant: preparation, characterization, and extinguishing mechanism discussion. J Fire Sci 28:5–25. https://doi.org/10.1177/0734904109340763

    Article  Google Scholar 

  38. Font R, Fullana A, Conesa JA et al (2001) Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrol 58(2):927–941. https://doi.org/10.1016/S0165-2370(00)00146-7

    Article  Google Scholar 

  39. Muthuraman M, Namioka T, Yoshikawa K (2010) Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy 87(1):141–148. https://doi.org/10.1016/j.apenergy.2009.08.004

    Article  Google Scholar 

  40. Damartzis T, Vamvuka D, Sfakiotakis S et al (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238. https://doi.org/10.1016/j.biortech.2011.02.060

    Article  Google Scholar 

  41. Koshiba Y, Takahashi Y, Ohtani H (2012) Flame suppression ability of metallocenes (nickelocene, cobaltcene, ferrocene, manganocene, and chromocene). Fire Saf J 51:10–17. https://doi.org/10.1016/j.firesaf.2012.02.008

    Article  Google Scholar 

  42. Bhattacharjee A, Rooj A, Roy D et al (2014) Thermal decomposition study of ferrocene [(C5H5)2Fe]. J Exp Phys 2014(5):601–612. https://doi.org/10.1155/2014/513268

    Article  Google Scholar 

  43. Su CH, Chen CC, Liaw HJ et al (2014) The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Proc Eng 84:485–490. https://doi.org/10.1016/j.proeng.2014.10.459

    Article  Google Scholar 

  44. Kibert CJ, Dierdorf D (1994) Solid particulate aerosol fire suppressants. Fire Technol 30(4):387–399. https://doi.org/10.1007/BF01039940

    Article  Google Scholar 

  45. Ewing CT, Faith FR, Romans JB et al (1995) Extinguishing class B fires with dry chemicals: scaling studies. Fire Technol 31(1):17–43. https://doi.org/10.1007/BF01305266

    Article  Google Scholar 

  46. Ewing CT, Hughes JT, Carhart HW (1984) The extinction of hydrocarbon flames based on the heat-absorption processes which occur in them. Fire Mater 8(3):148–156. https://doi.org/10.1002/fam.810080305

    Article  Google Scholar 

  47. Ewing CT, Faith FR, Hughes JT et al (1989) Evidence for flame extinguishment by thermal mechanisms. Fire Technol 25(3):195–212. https://doi.org/10.1007/bf01039778

    Article  Google Scholar 

  48. Romans JB, Hughes JT, Charhart HW (1992) Flame extinguishment properties of dry chemicals: extinction weights for small diffusion pan fires and additional evidence for flame extinguishment by thermal mechanisms. J Fire Prot Eng 4(2):35–51. https://doi.org/10.1177/104239159200400201

    Article  Google Scholar 

  49. Ewing CT, Beyler C, Carhar HW (1994) Extinguishment of class B flames by thermal and chemical actions; principles underlying a complete theory; prediction of flame extinguishing effectiveness. J Fire Prot Eng 6(1):23–54. https://doi.org/10.1177/104239159400600103

    Article  Google Scholar 

  50. Abdel-Kader A, Ammar AA, Saleh SI (1991) Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600°C. Thermochim Acta 176:293–304. https://doi.org/10.1016/0040-6031(91)80285-Q

    Article  Google Scholar 

  51. Urano K, Kiyoura R (1970) Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind Eng Chem Process Des Dev 9(4):489–494. https://doi.org/10.1021/i260036a001

    Article  Google Scholar 

  52. Halstead WD (1970) Thermal decomposition of ammonium sulphate. J Chem Technol Biot 20(4):4. https://doi.org/10.1002/jctb.5010200408

    Article  Google Scholar 

  53. Dyagileva LM, Mar’In VP, Tsyganova EI et al (1979) Reactivity of the first transition row metallocenes in thermal decomposition reaction. J Organomet Chem 175(1):63–72. https://doi.org/10.1016/S0022-328X(00)82299-8

    Article  Google Scholar 

  54. Leonhardt A, Hampel S, Muller C et al (2006) Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem Vapor Depos 12(6):380–387. https://doi.org/10.1002/cvde.200506441

    Article  Google Scholar 

  55. Rumminger MD, Reinelt D, Babushok V et al (1999) Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbony. Combust Flame 123(1):82–94. https://doi.org/10.1016/S0010-2180(00)00153-X

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 51704171), Postdoctoral Science Foundation of China (General Program) (Grant No. 2016M601796), Six Talent Peaks Project of Jiangsu (Grant No. 2014-XCL-010), Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Du, D., Guo, X. et al. Experimental Study on the Optimum Concentration of Ferrocene in Composite Ultrafine Dry Powder. Fire Technol 56, 913–936 (2020). https://doi.org/10.1007/s10694-019-00912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-019-00912-x

Keywords

Navigation