Advertisement

Fire Technology

, Volume 52, Issue 3, pp 623–647 | Cite as

A Virtual Reality Experiment on Flashing Lights at Emergency Exit Portals for Road Tunnel Evacuation

  • Enrico Ronchi
  • Daniel Nilsson
  • Saša Kojić
  • Joakim Eriksson
  • Ruggiero Lovreglio
  • Henric Modig
  • Anders Lindgren Walter
Article

Abstract

A virtual reality (VR) experiment with 96 participants was carried out to provide recommendations on the design of flashing lights at emergency exit portals for road tunnel emergency evacuation. The experiment was carried out in a Cave Automatic Virtual Environment laboratory. A set of variables was investigated, namely (1) colour of flashing lights, (2) flashing rate, (3) type of light source, (4) number and layout of the lights on the portal. Participants were immersed in a VR road tunnel emergency evacuation scenario and they were then asked to rank different portal designs using a questionnaire based on the Theory of Affordances. Results show that green or white flashing lights perform better than blue lights. A flashing rate of 1 and 4 Hz performed better than a flashing rate of 0.25 Hz. A light emitting diode light source performed better than single and double strobe lights. The three layouts of the lights under consideration performed similarly.

Keywords

Virtual reality Emergency evacuation Tunnel evacuation Flashing lights Theory of affordances Emergency exit 

Notes

Acknowledgments

This work is part of the “Stockholm Bypass, tunnel safety studies”, co-funded by Trafikverket and the EU Trans-European transport network (TEN-T). The work presented in this report is a sub-part of “Stockholm Bypass, tunnel safety studies” and it is called “Evacuation route design” (Utformning av utrymningsväg). The authors also wish to acknowledge Sara Petterson (MTO Säkerhet) and Andrew Pryke (Faveo Projektledning) for their support. The sole responsibility of this publication lies with the authors. The European Union is not responsible for any use that may be made of the information contained herein. Ruggiero Lovreglio thanks the Lerici Foundation for the financial support for his guest researcher appointment at Lund University.

References

  1. 1.
    Allen MJ, Strickland J, Adams AJ (1967) Visibility of red, green, amber and white signal lights in a highway scene. Clin Exp Optom 50(5):130–134. doi: 10.1111/j.1444-0938.1967.tb03622.x.CrossRefGoogle Scholar
  2. 2.
    Andrée K, Kinateder M, Nilsson D (2013) Immersive virtual environment as a method to experimentally study human behaviour in fire. Presented at the 13th International Conference and Exhibition on Fire Science and Engineering Interflam 2013, Royal Holloway College,Nr Windsor, UK.Google Scholar
  3. 3.
    Boer LC, van Wijngaarden SJ (2004) Directional sound evacuation from smoke-filled tunnels. Presented at the Safe & Reliable Tunnels. Innovative European Achievements, Prague, Czech Republic.Google Scholar
  4. 4.
    Caroly S, Kouabenan DR, Gandit M (2013) Analysis of danger management by highway users confronted with a tunnel fire. Saf Sci 60:35–46. doi: 10.1016/j.ssci.2013.06.006.CrossRefGoogle Scholar
  5. 5.
    Carvel R, Beard A (2005) The handbook of tunnel fire safety. London: Thomas Telford.Google Scholar
  6. 6.
    Cosma G (2014) Virtual reality experiments on the impact of way-finding lighting systems on egress from smoke-filled railway tunnel (Report No. 5455). Lund: Lund University.Google Scholar
  7. 7.
    Crawford A (1963) The perception of light signals: the effect of mixing flashing and steady irrelevant lights. Ergonomics 6(3):287–294. doi: 10.1080/00140136308930708.CrossRefGoogle Scholar
  8. 8.
    De Lorenzo RA, Eilers MA (1991) Lights and siren: a review of emergency vehicle warning systems. Ann Emerg Med 20(12):1331–1335. doi: 10.1016/S0196-0644(05)81076-5.CrossRefGoogle Scholar
  9. 9.
    Duarte E, Rebelo F, Teles J, Wogalter MS (2014) Behavioral compliance for dynamic versus static signs in an immersive virtual environment. Appl Ergon 45(5):1367–1375. doi: 10.1016/j.apergo.2013.10.004.CrossRefGoogle Scholar
  10. 10.
    Duffé P, Marec M (1999) Task Force for Technical Investigation of the 24 March 1999 Fire in the Mont Blanc Vehicular Tunnel. Minister of the Interior - Ministry of Equipment, Transportation and Housing.Google Scholar
  11. 11.
    European Commission (2004) Directive 2004/54/CE on minimum safety requirements for tunnels in the Trans-European Road Network (29/04/2004).Google Scholar
  12. 12.
    Fridolf K, Ronchi E, Nilsson D, Frantzich H (2013) Movement speed and exit choice in smoke-filled rail tunnels. Fire Saf J 59:8–21. doi: 10.1016/j.firesaf.2013.03.007.CrossRefGoogle Scholar
  13. 13.
    Galea ER, Deere S, Sharp G, Filippidis L, Hulse LM (2010). Investigating the impact of culture on Evacuation behaviour. In 12th International Fire Science & Engineering Conference, vol. 1. Nottigham (UK), pp. 879–892.Google Scholar
  14. 14.
    Gandit M, Kouabenan DR, Caroly S (2009) Road-tunnel fires: risk perception and management strategies among users. Saf Sci 47(1):105–114. doi: 10.1016/j.ssci.2008.01.001.CrossRefGoogle Scholar
  15. 15.
    Gerathewohl SJ (1953) Conspicuity of steady and flashing light signals: variation of contrast. J Opt Soc Am 43(7):567. doi: 10.1364/JOSA.43.000567.CrossRefGoogle Scholar
  16. 16.
    Gibson JJ (1977) In: R. Shaw, J. Bransford (eds), Perceiving, acting, and knowing toward an ecological psychology. Hillsdale: Lawrence Erlbaum Associates. distributed by the Halsted Press Division, Wiley.Google Scholar
  17. 17.
    Gibson JJ (1986) The ecological approach to visual perception. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  18. 18.
    Greene WH, Hensher DA (2010) Modeling ordered choices: a primer. Cambridge: Cambridge University Press, p. 382.CrossRefzbMATHGoogle Scholar
  19. 19.
    Hartson HR (2003) Cognitive, physical, sensory, and functional affordances in interaction design. Behav Inf Technol 22:315–338.CrossRefGoogle Scholar
  20. 20.
    Hensher DA, Rose JM, Greene WH (2005) Applied choice analysis: a primer. Cambridge: Cambridge University Press, p. 717.CrossRefzbMATHGoogle Scholar
  21. 21.
    Heskestad AW (1999) Performance in smoke of wayguidance systems. Fire Mater 23(6):375–381. doi: 10.1002/(SICI)1099-1018(199911/12)23:6<375::AID-FAM714>3.0.CO;2-0.CrossRefGoogle Scholar
  22. 22.
    International Standards Organization (2011) ISO 3864-1:2011 Graphical symbols—safety colours and safety signs.Google Scholar
  23. 23.
    Jin T, Yamada T (1994) Experimental study on effect of escape guidance in fire smoke by travelling flashing of light sources. Fire Saf Sci 4:705–714. doi: 10.3801/IAFSS.FSS.4-705.CrossRefGoogle Scholar
  24. 24.
    Joo J, Kim N, Wysk RA, Rothrock L, Son Y-J, Oh Y, Lee S (2013) Agent-based simulation of affordance-based human behaviors in emergency evacuation. Simul Model Pract Theory 32:99–115. doi: 10.1016/j.simpat.2012.12.007.CrossRefGoogle Scholar
  25. 25.
    Kim N, Joo J, Rothrock L, Wysk R, Son Y-J (2011) Human behavioral simulation using affordance-based agent model. In: J. A. Jacko (ed), Human-computer interaction. Design and development approaches, vol. 6761. Berlin: Springer, pp. 368–377. Retrieved from http://www.springerlink.com/index/10.1007/978-3-642-21602-2_40.
  26. 26.
    Kinateder M (2013) Social influence in emergency situations—studies in virtual reality. Phd Dissertation. University of Würzburg.Google Scholar
  27. 27.
    Kinateder M, Müller M, Jost M, Mühlberger A, Pauli P (2014) Social influence in a virtual tunnel fire—influence of conflicting information on evacuation behavior. Appl Ergon 45(6):1649–1659. doi: 10.1016/j.apergo.2014.05.014.CrossRefGoogle Scholar
  28. 28.
    Kinateder M, Pauli P, Müller M, Krieger J, Heimbecher F, Rönnau I et al (2013) Human behaviour in severe tunnel accidents: Effects of information and behavioural training. Transp Res F 17:20–32. doi: 10.1016/j.trf.2012.09.001.CrossRefGoogle Scholar
  29. 29.
    Kinateder M, Ronchi E, Gromer D, Müller M, Jost M, Nehfischer M et al (2014) Social influence on route choice in a virtual reality tunnel fire. Transp Res F 26:116–125. doi: 10.1016/j.trf.2014.06.003.CrossRefGoogle Scholar
  30. 30.
    Kinateder M, Ronchi E, Nilsson D, Kobes M, Müller M, Pauli P, Mühlberger A (2014) Virtual reality for fire evacuation research. In 1st Workshop Complex Events and Information Modelling. Warsow, pp. 319–327.Google Scholar
  31. 31.
    Kobes M, Helsloot I, de Vries B, Post JG, Oberijé N, Groenewegen K (2010) Way finding during fire evacuation; an analysis of unannounced fire drills in a hotel at night. Build Environ 45(3):537–548. doi: 10.1016/j.buildenv.2009.07.004.CrossRefGoogle Scholar
  32. 32.
    Lai CJ (2010) Effects of color scheme and message lines of variable message signs on driver performance. Accid Anal Prev 42(4):1003–1008. doi: 10.1016/j.aap.2009.12.002.CrossRefGoogle Scholar
  33. 33.
    Lin F (2002) Developing virtual environments for industrial training. Inf Sci 140(1–2), 153–170. doi: 10.1016/S0020-0255(01)00185-2.CrossRefzbMATHGoogle Scholar
  34. 34.
    McClintock T, Shields TJ, Reinhardt-Rutland A, Leslie J (2001) A behavioural solution to the learned irrelevance of emergency exit signage. In Second International Symposium on Human Behaviour in Fire. Massachusetts Institute of Technology, Cambridge (USA), pp. 23–33.Google Scholar
  35. 35.
    McClintock T, Shields TJ, Rutland R, Leslie J (2000) Dishabituation and stimulus equivalence could make all emergency fire exits familiar. J Appl Fire Sci 9(2):125–134. doi: 10.2190/VYX5-0HDX-NT7H-L39D.CrossRefGoogle Scholar
  36. 36.
    Modig H, Pryke A, Lindgren Walter A, Patterson S, Ronchi E, Nilsson D (2014) Human behaviour studies to improve evacuations in road tunnels. 6th International Symposium on Tunnel Safety and Security ISTSS2014. Marseille (France).Google Scholar
  37. 37.
    Mühlberger A, Bülthoff HH, Wiedemann G, Pauli P (2007) Virtual reality for the psychophysiological assessment of phobic fear: responses during virtual tunnel driving. Psychol Assess 19(3):340–346. doi: 10.1037/1040-3590.19.3.340.CrossRefGoogle Scholar
  38. 38.
    Nilsson D (2009) Exit choice in fire emergencies: influencing choice of exit with flashing lights. Lund: Dept. of Fire Safety Engineering and Systems Safety, Lund University.Google Scholar
  39. 39.
    Nilsson D, Frantzich H, Saunders W (2005) Coloured flashing lights to mark emergency exits—experiences from evacuation experiments. Fire Saf Sci 8:569–579. doi: 10.3801/IAFSS.FSS.8-569.CrossRefGoogle Scholar
  40. 40.
    Nilsson D, Johansson A (2009) Social influence during the initial phase of a fire evacuation—analysis of evacuation experiments in a cinema theatre. Fire Saf J 44(1):71–79. doi: 10.1016/j.firesaf.2008.03.008.CrossRefGoogle Scholar
  41. 41.
    Nilsson D, Johansson M, Frantzich H (2009) Evacuation experiment in a road tunnel: a study of human behaviour and technical installations. Fire Saf J 44(4):458–468. doi: 10.1016/j.firesaf.2008.09.009.CrossRefGoogle Scholar
  42. 42.
    Ortúzar S, de Dios J (2011) Modelling transport 4th ed. Chichester: Wiley.CrossRefGoogle Scholar
  43. 43.
    Ronchi E, Kinateder M, Müller M, Jost M, Nehfischer M, Pauli P, Muhlberger A (2014) Evacuation travel paths in virtual reality experiments for tunnel safety analysis. Fire Saf J 71:257–267. doi: 10.1016/j.firesaf.2014.11.005.CrossRefGoogle Scholar
  44. 44.
    Ronchi E, Nilsson D, Gwynne SMV (2012) Modelling the impact of emergency exit signs in tunnels. Fire Technol 48(4):961–988. doi: 10.1007/s10694-012-0256-y.CrossRefGoogle Scholar
  45. 45.
    Ronchi E (2013) Testing the predictive capabilities of evacuation models for tunnel fire safety analysis. Saf Sci 59, 141–153. doi: 10.1016/j.ssci.2013.05.008.CrossRefGoogle Scholar
  46. 46.
    Ronchi E, Gwynne SMV, Purser DA, Colonna P (2013) Representation of the impact of smoke on agent walking speeds in evacuation models. Fire Technol 49:411–431. doi: 10.1007/s10694-012-0280-y.CrossRefGoogle Scholar
  47. 47.
    Sixsmith A, Sixsmith J, Canter DV (1988) When is a door not a door? A study of evacuation route identification in a large shopping mall. Safety in the built environment. In: J. D. Sime (ed). London: E. & F.N. Spon.Google Scholar
  48. 48.
    Steuer J (1992) Defining virtual reality: dimensions determining telepresence. J Commun 42(4):73–93. doi: 10.1111/j.1460-2466.1992.tb00812.x.CrossRefGoogle Scholar
  49. 49.
    Tang C-H, Wu W-T, Lin C-Y (2009) Using virtual reality to determine how emergency signs facilitate way-finding. Appl Ergon 40:722–730. doi: 10.1016/j.apergo.2008.06.009.CrossRefGoogle Scholar
  50. 50.
    Train KE (2009). Discrete choice methods with simulation. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511805271.CrossRefzbMATHGoogle Scholar
  51. 51.
    Vos JJ, Van Meeteren A (1971) Visual processes involved in seeing flashes. In the perception and application of flashing lights. London: Adam Hilger Ltd, pp. 3–16.Google Scholar
  52. 52.
    Wallergård M, Eriksson J, Johansson G (2008) A suggested Virtual Reality methodology allowing people with cognitive disabilities to communicate their knowledge and experiences of public transport systems. Technol Disabil 20(1):9–24.Google Scholar
  53. 53.
    Wickens CD (2013). Engineering psychology and human performance, 4th edn. Boston: Pearson.Google Scholar
  54. 54.
    Williams-Bell FM, Kapralos B, Hogue A, Murphy BM, Weckman EJ (2014) Using serious games and virtual simulation for training in the fire service: a review. Fire Technol. doi: 10.1007/s10694-014-0398-1.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Enrico Ronchi
    • 1
  • Daniel Nilsson
    • 1
  • Saša Kojić
    • 1
  • Joakim Eriksson
    • 2
  • Ruggiero Lovreglio
    • 3
  • Henric Modig
    • 4
  • Anders Lindgren Walter
    • 5
  1. 1.Department of Fire Safety EngineeringLund UniversityLundSweden
  2. 2.Department of Design SciencesLund UniversityLundSweden
  3. 3.Department of Civil, Environmental, Planning, Building and ChemistryTechnical University of BariBariItaly
  4. 4.Faveo Projektledning ABStockholmSweden
  5. 5.MTO Säkerhet ABStockholmSweden

Personalised recommendations