Fire Technology

, Volume 50, Issue 1, pp 9–38 | Cite as

Characterization of Fuel Properties and Fire Spread Rates for Little Bluestem Grass

  • K. J. Overholt
  • J. Cabrera
  • A. Kurzawski
  • M. Koopersmith
  • O. A. Ezekoye


Rapid urban sprawl and population decentralization in recent decades have increased the size of the wildland-urban interface and resulted in higher community risk and vulnerability to wildfire. This paper primarily focuses on understanding grass-fueled fires common to Texas and improving the understanding of the physics and fire dynamics that are inherent in the grassland and prairie flame spread problem. Little bluestem (Schizachyrium scoparium) grass was chosen as the grassland fuel due to its prevalent coverage in the Texas area and its relevance to grassland fires in Texas. The methodology in this study relies on a framework to characterize fuel properties of little bluestem grass using small- and intermediate-scale experiments to better predict full-scale fire behavior. An intermediate-scale numerical flame spread model was developed for grass fuels that accounts for fuel moisture content to calculate the mass versus time of a burning little bluestem plant. The results of the small- and intermediate-scale experiments were used to develop input parameters for a field-scale numerical simulation of a grass field using a physics-based computational fire model, Wildland-urban interface Fire Dynamics Simulator (WFDS). A sensitivity analysis was performed to determine the effect of varying WFDS input parameters on the fire spread rate. The results indicate that the fuel moisture content had the most significant impact on the fire spread rate.


Wildland fires WUI fires Grassland fires Grass fuel properties Wildland fire modeling WFDS 



The authors acknowledge contributions from and collaboration with Karen Ridenour and Richard Gray of Texas Forest Service, Kate Crosthwaite of Texas National Guard, and Craig Weinschenk of National Institute of Standards and Technology. The authors also thank Ruddy Mell for his useful comments on the details of WFDS.


  1. 1.
    Clements C (2007) Observing the dynamics of wildland grass fires: fireflux—a field validation experiment. Bull Am Meteorol Soc 1–14Google Scholar
  2. 2.
    Massada A, Radeloff V, Stewart S, Hawbaker T (2009) Wildfire risk in the wildland–urban interface: a simulation study in northwestern Wisconsin. For Ecol Manage 258(9):1990–1999CrossRefGoogle Scholar
  3. 3.
    Gray R, Dunivan M, Jones J, Ridenour K, Leathers M, Stafford K (2007) Cross Plains, Texas wildland fire case study. Texas Forest Service, LufkinGoogle Scholar
  4. 4.
    Inciweb (2011) Bastrop fire incident overview. Accessed 1 Dec 2011
  5. 5.
    Finney MA (2004) FARSITE: Fire area simulator—model development and evaluation. USDA Forest Service Research Paper, RMRS-RP-4 RevisedGoogle Scholar
  6. 6.
    Mutlu M, Popescu S, Zhao K (2008) Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps. For Ecol Manage 256(3):289–294CrossRefGoogle Scholar
  7. 7.
    Hardy C, Heilman W, Weise D, Goodrick S, Ottmar R (2008) Fire behavior science advancement planGoogle Scholar
  8. 8.
    Mell W, Jenkins M, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16(1):1–22CrossRefGoogle Scholar
  9. 9.
    Albini F (1976) Estimating wildfire behavior and effects. USDA Forest Service, intermountain forest and range experiment station, general technical report INT-30, p 92Google Scholar
  10. 10.
    Anderson H (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service, intermountain forest and range experiment station. General technical report, INT-122, p 22Google Scholar
  11. 11.
    Viney N (1991) A review of fine fuel moisture modelling. Int J Wildland Fire 1(4):215–234CrossRefGoogle Scholar
  12. 12.
    Bartoli P, Simeoni A, Biteau H, Torero JL, Santoni PA (2011) Determination of the main parameters influencing forest fuel combustion dynamics. Fire Saf J 46(1–2):27–33CrossRefGoogle Scholar
  13. 13.
    Beer T (1993) The speed of a fire front and its dependence on wind-speed. Int J Wildland Fire 3(4):193–202CrossRefGoogle Scholar
  14. 14.
    Allred K (1982) Describing the grass inflorescence. J Range Manage 35(5):672–675CrossRefGoogle Scholar
  15. 15.
    Cheney N, Gould J, Catchpole W (1993) The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int J Wildland Fire 3(1):31–44CrossRefGoogle Scholar
  16. 16.
    Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2):34–40CrossRefGoogle Scholar
  17. 17.
    Tran H, White R (1992) Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater 16(4):197–206CrossRefGoogle Scholar
  18. 18.
    Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, ChichesterCrossRefGoogle Scholar
  19. 19.
    Society of Fire Protection Engineers (2008) SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, QuincyGoogle Scholar
  20. 20.
    Anderson H, Rothermel R (1965) Influence of moisture and wind upon the characteristics of free-burning fires. In: Proceedings of symposium (international) on combustion, vol 10. Pittsburgh, pp 1009–1019Google Scholar
  21. 21.
    Cheney N, Gould J, Catchpole W (1998) Prediction of fire spread in grasslands. Int J Wildland Fire 8(1):1–13CrossRefGoogle Scholar
  22. 22.
    Rehm R, McDermott R (2009) Mathematical modeling of wildland–urban interface fires. Paper presented at the mathematics and fire workshop, ZaragozaGoogle Scholar
  23. 23.
    Sharples JJ, Mcrae RHD, Weber RO, Gill AM (2009) A simple index for assessing fuel moisture content. Environ Model Softw 24(5):637–646CrossRefGoogle Scholar
  24. 24.
    Madrigal J, Guijarro M, Hernando C, Diez C, Marino E (2011) Estimation of peak heat release rate of a forest fuel bed in outdoor laboratory conditions. J Fire Sci 29(1):53–70CrossRefGoogle Scholar
  25. 25.
    Mell W, Maranghides A, McDermott R, Manzello S (2009) Numerical simulation and experiments of burning douglas fir trees. Combust Flame 156(10):2023–2041CrossRefGoogle Scholar
  26. 26.
    Dupuy J, Marechal J, Morvan D (2003) Fires from a cylindrical forest fuel burner: combustion dynamics and flame properties. Combust Flame 135(1–2):65–76CrossRefGoogle Scholar
  27. 27.
    Stenseng M, Jensen A, Dam-Johansen K (2001) Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J Anal Appl Pyrol 58–59:765–780CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Zhang H, Zhou D (2011) Flammability characterisation of grassland species of Songhua Jiang-Nen Jiang Plain (China) using thermal analysis. Fire Saf J 46(5):1–6CrossRefGoogle Scholar
  29. 29.
    Overholt KJ, Ezekoye OA (2012) Characterizing heat release rates using an inverse fire modeling technique. Fire Technology. doi: 10.1007/s10694-011-0250-9
  30. 30.
    Dalgarn M, Wilson R (1975) Net productivity and ecological efficiency of andropogon scoparius growing in an Ohio relict prairie. Ohio J Sci 75(4):194–197Google Scholar
  31. 31.
    Golley F (1961) Energy values of ecological materials. Ecology 42(3):581–584CrossRefGoogle Scholar
  32. 32.
    Kidnie S (2009) Fuel load and fire behaviour in the southern Ontario tallgrass prairie. Thesis, University of TorontoGoogle Scholar
  33. 33.
    Lyon RE (2000) Solid-state thermochemistry of flaming combustion. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. CRC Press, Boca Raton, pp 391–447Google Scholar
  34. 34.
    Incropera FP (2001) Fundamentals of heat and mass transfer. Wiley, New YorkGoogle Scholar
  35. 35.
    McGrattan K, McDermott R, Hostikka S, Floyd J (2010) Fire dynamics simulator (Version 5): user’s guide. NIST special publication 1019–5. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  36. 36.
    Ritchie S, Steckler K, Hamins A, Cleary T, Yang J, Kashiwagi T (1997) The effect of sample size on the heat release rate of charring materials. In: Fire safety science: Proceedings of the fifth international symposium, Melbourne, pp 177–188Google Scholar
  37. 37.
    Rothermel R (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT-115Google Scholar
  38. 38.
    Morvan D, Méradji S, Accary G (2009) Physical modelling of fire spread in grasslands. Fire Saf J 44(1):50–61CrossRefGoogle Scholar
  39. 39.
    Leithead HL, Yarlett LL, Shiflet TN (1971) 100 native forage grasses in 11 southern states (Agriculture handbook no. 389). U.S. Soil Conservation ServiceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. J. Overholt
    • 1
  • J. Cabrera
    • 1
  • A. Kurzawski
    • 1
  • M. Koopersmith
    • 1
  • O. A. Ezekoye
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of TexasAustinUSA

Personalised recommendations