Fire Technology

, Volume 50, Issue 4, pp 1021–1040 | Cite as

On the Use of Real-Time Video to Forecast Fire Growth in Enclosures

  • Tarek Beji
  • Steven Verstockt
  • Rik Van de Walle
  • Bart Merci
Invited Paper


The potential of the concept of combining video data analysis and numerical simulations for numerical fire forecasting is illustrated for the case of a burning sofa in an ISO room. The fire is monitored by means of a video camera. The temporal evolution of smoke layer height, flame height and flame width are obtained from the real-time video data analysis. The fire heat release rate, estimated from the flame height and width, serves as input for the numerical simulations. The two-zone model approach is adopted, because the calculations are very fast. This is necessary for forecasting: time scales in fire development are in the order of seconds (minutes), not hours (which are typical calculation times in CFD simulations). Data assimilation with real-time adjustments according to sudden changes in the fire development as observed, improves the predictions by the two-zone model and allows to make a forecast of the fire development and possible subsequent hazards, in terms of evolution of smoke layer height and temperature.


Fire forecast Video fire monitoring Data assimilation (DA) Two-zone model Numerical simulations 



The research activities as described in this paper were funded by Ghent University, the Interdisciplinary Institute for Broadband Technology (IBBT), University College West Flanders, Warrington Fire Ghent, the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), the Fund for Scientific Research-Flanders (FWO-Flanders G.0060.09), the Belgian Federal Science Policy Office (BFSPO), and the European Union.


  1. 1.
    Cowlard A, Jahn W, Abecassis-Empis C, Rein G (2010) Sensor assisted fire fighting. Fire Technol 46:719–741. doi: 10.1007/s10694-008-0069-1 CrossRefGoogle Scholar
  2. 2.
    Verstockt S, Van Hoecke S, Tilley N, Merci B, Sette B, Lambert P, Hollemeersch C, Van de Walle R (2011) FireCube: a multi-view localization framework for 3D fire analysis. Fire Saf J 46:262–275. doi: 10.1016/j.firesaf.2011.03.001 CrossRefGoogle Scholar
  3. 3.
    Calderara S, Piccinini P, Cucchiara R (2010) Vision based smoke detection system using image energy and color information. Mach Vision Appl 22:705–719. doi: 10.1007/s00138-010-0272-1 CrossRefGoogle Scholar
  4. 4.
    Owrutsky JC, Steinhurst DA, Minor CP, Rose- Pehrsson SL, Williams FW, Gottuk DT (2006) Long wavelength video detection of fire in ship compartments. Fire Saf J 41:315–320. doi: 10.1016/j.firesaf.2005.11.011 CrossRefGoogle Scholar
  5. 5.
    Günay O, Taşdemir K, Tőreyin BU, Cetin AE (2009) Video based wildfire detection at night. Fire Saf J 44:860–868. doi: 10.1016/j.firesaf.2009.04.003 CrossRefGoogle Scholar
  6. 6.
    Jahn W (2010) Inverse modelling to forecast enclosure fire dynamics. Dissertation, The University of Edinburgh,
  7. 7.
    Peacock RD, Forney GP, Reneke P, Portier R, Jones WW (1993) CFAST, the consolidated model of fire growth and smoke transport. National Institute of Standards and Technology, Gaithersberg, MD 20899-8642, NISTTN 1299, pp 1–235Google Scholar
  8. 8.
    Tanaka T, Yamada S (2004) BRI2002: two layer zone smoke transport model. Fire Sci Technol 23:1–44. doi: 10.3210/fst.23.1 CrossRefGoogle Scholar
  9. 9.
    Cooper LY (1990) Estimating the environment and the response of sprinkler links in compartment fires with draft curtains and fusible-link actuated ceiling vent-Theory. Fire Saf J 16:137–163. doi: 10.1016/0379-7112(90)90030-I CrossRefGoogle Scholar
  10. 10.
    Walton WD (2002) Zone computer fire models for enclosures. In: DiNenno PJ et al (eds) The SFPE handbook of fire protection engineering, 3rd edn. SFPE, NFPA, Quincy, pp 3-189–3-193Google Scholar
  11. 11.
    Tilley N, Rauwoens P, Merci B (2011) Verification of the accuracy of CFD simulations in small-scale tunnel and atrium fire configurations. Fire Saf J 46:186–193. doi: 10.1016/j.firesaf.2011.01.007 CrossRefGoogle Scholar
  12. 12.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Recog Mach Intell 11(7):674–693. doi: 10.1109/34.192463 CrossRefzbMATHGoogle Scholar
  13. 13.
    Calderara S, Piccinini P, Cucchiara V (2008) Smoke detection in video surveillance: a MoG model in the wavelet domain. In: Proceedings of 6th international conference in computer vision systems (ICVS), pp 119–128Google Scholar
  14. 14.
    Piccinini P, Calderara S, Cucchiara R (2008) Reliable smoke detection system in the domains of image energy and color. In: Proceedings of international conference on image processing, pp 1376–1379Google Scholar
  15. 15.
    Verstockt S, Vanoosthuyse A, Van Hoecke S, Lambert P, Van de Walle R (2010) Multi-sensor fire detection by fusing visual and non-visual flame features. In: Proceedings of the 4th international conference on image and signal processing, pp 333–341Google Scholar
  16. 16.
    Toreyin BU, Dedeoglu Y, Gudukbay U, Cetin AE (2006) Computer vision based method for real-time fire and flame detection. Pattern Recog Lett 27:49–58. doi: 10.1016/j.patrec.2005.06.015 CrossRefGoogle Scholar
  17. 17.
    Davis WD, Forney GP (2001) A sensor-driven fire model version 1.1. National institute of standards and technology. Building and Fire Research Laboratory, Gaithersberg, MD 20899-8642, NISTIR 6705Google Scholar
  18. 18.
    Neviackas AW (2007) Inverse fire modeling to estimate the heat release rate of compartment fires. University of Maryland, Master’s thesisGoogle Scholar
  19. 19.
    Jahn W, Rein G, Torero JL (2010) Forecasting fire growth using an inverse zone modeling approach. Fire Saf J 46:81–88. doi: 10.1016/j.firesaf.2010.10.001 CrossRefGoogle Scholar
  20. 20.
    Stratton BJ (2005) Determining flame height and flame pulsation frequency and estimating Heat Release Rate from 3D flame reconstruction. University of Canterbury, DissertationGoogle Scholar
  21. 21.
    Cox G (1995) Compartment fire modeling. In: Cox G (ed) Combustion fundamentals of fire. London, pp 329–404Google Scholar
  22. 22.
    Rasbash D, Ramachandran G, Kandola B, Watts J, Law M (2004) Evaluation of fire safety. Wiley, New YorkGoogle Scholar
  23. 23.
    McCaffrey BJ (1983) Momentum implications for buoyant diffusion flames. Combust Flame 52:149–167. doi: 10.1016/0010-2180(83)90129-3 CrossRefGoogle Scholar
  24. 24.
    Prahl J, Emmons HW (1975) Fire induced flows through an opening. Combust Flame 25:369–385. doi: 10.1016/0010-2180(75)90109-1 CrossRefGoogle Scholar
  25. 25.
    Ouyang Y, Zhang JE, Luo SM (2007) Dynamic data driven application system: recent development and future perspective. Ecol Model 204:1–8. doi: 10.1016/j.ecolmodel.2006.12.010 CrossRefGoogle Scholar
  26. 26.
    Beji T, Verstockt S, Van de Walle R, Merci B (2012) Prediction of smoke filling in large volumes by means of data assimilation based numerical simulations. J Fire Sci doi: 10.1177/0734904112437845
  27. 27.
    Klote JH, Milke JA (2002) Principles of smoke management. AtlantaGoogle Scholar
  28. 28.
    Natori A, Kakae N, Kitahori J, Tsuchihashi T, Abe T, Nagaoka T, Ohmiya Y, Harada K (2006) Development of asimple estimation method of heat release rate based on classification of common combustibles into category groups. Fire Sci Technol 25:31–54. doi: 10.3210/fst.25.31 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tarek Beji
    • 1
  • Steven Verstockt
    • 2
  • Rik Van de Walle
    • 2
  • Bart Merci
    • 1
  1. 1.Department of Flow, Heat and Combustion MechanicsGhent University–UGentGhentBelgium
  2. 2.Multimedia Lab, Department of Electronics and Information SystemsGhent University–IBBTLedeberg-GhentBelgium

Personalised recommendations