Advertisement

Fibre Chemistry

, Volume 51, Issue 3, pp 170–174 | Cite as

Biodegradable Composites Based on Polylactide and Starch

  • S. Z. RogovinaEmail author
  • K. V. Aleksanyan
Article
  • 23 Downloads

Biodegradable composites based on polylactide and starch are obtained via solid-phase mixing with shear deformation. The effects of poly(ethylene glycol) plasticizers of different molecular masses on the mechanical characteristics, water absorption, and biodegradability of the composites are studied. The crystallinity of samples is assessed using x-ray structure analysis before and after soil exposure. Their morphology is studied using scanning electron microscopy.

References

  1. 1.
    I. Vroman and L. Tighzert, Materials, 2, 307-344 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Z. Rogovina, Polym. Sci., Ser. C, 58, 68-80 (2016).Google Scholar
  3. 3.
    Y. Long (ed.), Biodegradable Polymer Blends and Composites from Renewable Resources, John Wiley & Sons, Inc., New York, 2009.Google Scholar
  4. 4.
    M. Itdvaara, S. Karjomaa, and J.-F. Selin, Chemosphere, 46, 879-885 (2002).CrossRefGoogle Scholar
  5. 5.
    C. M. Ryan, N. U. Buehler, et al., US Pat. No. 6,506,873, Jan. 14, 2003.Google Scholar
  6. 6.
    T. C. Mokhena, J. S. Sefadi, et al., Polymers, 10, (2018); doi  https://doi.org/10.3390/polym10121363.CrossRefGoogle Scholar
  7. 7.
    S. Z. Rogovina, K. V. Aleksanyan, et al., Polym. Sci., Ser. B, 58, 38-46 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Nasrin, S. Biswas, et al., Bioact. Mater., 2, 199-207 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Z. Rogovina, K. V. Aleksanyan, et al., Russ. J. Bioorg. Chem., 42, 685-693 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Z. Rogovina, K. V. Aleksanyan, et al., Starch/Staerke, 70, (2018); doi  https://doi.org/10.1002/star.201700268.CrossRefGoogle Scholar
  11. 11.
    D. R. Lu, C. M. Xiao, and S. J. Xu, eXPRESS Polym. Lett., 3, 366-375 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Schwach and L. Averous, Polym. Int., 53, 2115-2124 (2004).CrossRefGoogle Scholar
  13. 13.
    I. Noorizzah, A. W. M. Kahar, and D. N. Uylan, J. Polym. Mater., 33, 201-212 (2016).Google Scholar
  14. 14.
    P. Xue, K. J. Wang, M. Y. Jia, et al., J. Wuhan Univ. Technol., Mater. Sci. Ed., 28, 157-162 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Kozlowski, R. Masirek, et al., J. Appl. Polym. Sci., 105, 269-277 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. Yu, Y. Cheng, et al., J. Appl. Polym. Sci., 132, No. 16 (2015); doi  https://doi.org/10.1002/app.41808.Google Scholar
  17. 17.
    M. Akrami, I. Ghasemi, et al., Carbohydr. Polym., 144, 254-262 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Z. Rogovina, K. V. Aleksanyan, et al., Polym. Sci., Ser. A, 51, 554-562 (2009).CrossRefGoogle Scholar
  19. 19.
    H. D. Gowhar, N. K. Azra, et al., Int. J. Biotechnol. Mol. Biol. Res., 5, 35-40 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N. N. Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations