Production of an Interphase Coating of Polycarbosilane and Rolivsan Ceramic-Forming Compounds on Carbon Fiber
- 19 Downloads
The conditions for depositing a ceramic-forming compound interphase coating on carbon fibers were investigated. Use of polycarbosilane and Rolivsan ceramic-forming compounds in hexane (<3 mass%) and polymer derived ceramic infiltration in an inert medium produced according to the optimal regime based on thermal kinetic calculations an even interphase coating that increased the thermal-oxidation resistance of the starting carbon fibers. The combustion products of carbon fibers with the deposited interphase were hollow SiO2 structures.
Notes
ACKNOWLEDGEMENT
We thank A. M. Shestakov, I. V. Zelenina, O. Yu. Sorokin, S. D. Sinyakov, and A. I. Gulyaev for assistance with the work. The work was financially supported by the Russian Foundation for Basic Research in the framework of Project No. 17-03-01163.
References
- 1.S.-J. Park, Carbon Fiber, Springer, Netherlands, 2015.Google Scholar
- 2.E. N. Kablov, D. V. Grashchenkov, et al., Steklo Keram., 4, 7 (2012).Google Scholar
- 3.S. S. Solntsev, V. S. Denisova, and V. A. Rozenenkova, Aviats. Mater. Tekhnol., (S), 329 (2017).Google Scholar
- 4.E. N. Kablov, B. V. Shchetanov, et al., Tr. VIAM, No. 2, 5 (2013).Google Scholar
- 5.E. N. Kablov, Vse Mater., No. 5, 7 (2007).Google Scholar
- 6.E. Ya. Beider, G. N. Petrova, and T. F. Izotova, Tr. VIAM: Elektron. Nauchn.-Tekh. Zh., No. 9, 7 (2014).Google Scholar
- 7.Department of Defense Handbook: Composite Materials Handbook, Vol. 5, Ceramic Matrix Composites, 2002.Google Scholar
- 8.S. S. Solntsev, V. A. Rozenenkova, and N. A. Mironova, Aviats. Mater. Tekhnol., (S), 359 (2012).Google Scholar
- 9.P. Colombo, G. Mera, et al., J. Am. Ceram. Soc., 93, 1805 (2010).Google Scholar
- 10.M. A. Khaskov, N. I. Shvets, and A. M. Shestakov, in: Proceedings of the Conference “High-Temperature Ceramic Composites and Protective Coatings” [in Russian], VIAM, Moscow, 2014, p. 12.Google Scholar
- 11.A. M. Shestakov, N. I. Shvets, et al., Russ. J. Appl. Chem., 88, 1481 (2015).CrossRefGoogle Scholar
- 12.B. A. Zaitsev and I. D. Shvabskaya, Russ. J. Appl. Chem., 83, 1270 (2010).CrossRefGoogle Scholar
- 13.M. I. Valueva, I. V. Zelenina, et al., Tr. VIAM, No. 10, 9 (2017).Google Scholar
- 14.H. Q. Ly, R. Taylor, et al., J. Mater. Sci., 36, 4037 (2001).CrossRefGoogle Scholar
- 15.E. Moukhina, J. Therm. Anal. Calorim., 109, 1203 (2012).CrossRefGoogle Scholar
- 16.M. A. Khaskov, A. M. Shestakov, et al., Zh. Prikl. Khim., 91, 890 (2018).Google Scholar
- 17.M. A. Khaskov, Zh. Prikl. Khim., 89, 510 (2016).Google Scholar
- 18.S. Music, N. Filipovic-Vincekovic, and L. Sekovanic, Braz. J. Chem. Eng., 28, 89 (2011).CrossRefGoogle Scholar