Fibre Chemistry

, Volume 51, Issue 2, pp 92–96 | Cite as

Production of an Interphase Coating of Polycarbosilane and Rolivsan Ceramic-Forming Compounds on Carbon Fiber

  • M. A. KhaskovEmail author
  • E. A. Sul’yanova
  • M. I. Valueva
  • E. A. Davydova

The conditions for depositing a ceramic-forming compound interphase coating on carbon fibers were investigated. Use of polycarbosilane and Rolivsan ceramic-forming compounds in hexane (<3 mass%) and polymer derived ceramic infiltration in an inert medium produced according to the optimal regime based on thermal kinetic calculations an even interphase coating that increased the thermal-oxidation resistance of the starting carbon fibers. The combustion products of carbon fibers with the deposited interphase were hollow SiO2 structures.



We thank A. M. Shestakov, I. V. Zelenina, O. Yu. Sorokin, S. D. Sinyakov, and A. I. Gulyaev for assistance with the work. The work was financially supported by the Russian Foundation for Basic Research in the framework of Project No. 17-03-01163.


  1. 1.
    S.-J. Park, Carbon Fiber, Springer, Netherlands, 2015.Google Scholar
  2. 2.
    E. N. Kablov, D. V. Grashchenkov, et al., Steklo Keram., 4, 7 (2012).Google Scholar
  3. 3.
    S. S. Solntsev, V. S. Denisova, and V. A. Rozenenkova, Aviats. Mater. Tekhnol., (S), 329 (2017).Google Scholar
  4. 4.
    E. N. Kablov, B. V. Shchetanov, et al., Tr. VIAM, No. 2, 5 (2013).Google Scholar
  5. 5.
    E. N. Kablov, Vse Mater., No. 5, 7 (2007).Google Scholar
  6. 6.
    E. Ya. Beider, G. N. Petrova, and T. F. Izotova, Tr. VIAM: Elektron. Nauchn.-Tekh. Zh., No. 9, 7 (2014).Google Scholar
  7. 7.
    Department of Defense Handbook: Composite Materials Handbook, Vol. 5, Ceramic Matrix Composites, 2002.Google Scholar
  8. 8.
    S. S. Solntsev, V. A. Rozenenkova, and N. A. Mironova, Aviats. Mater. Tekhnol., (S), 359 (2012).Google Scholar
  9. 9.
    P. Colombo, G. Mera, et al., J. Am. Ceram. Soc., 93, 1805 (2010).Google Scholar
  10. 10.
    M. A. Khaskov, N. I. Shvets, and A. M. Shestakov, in: Proceedings of the Conference “High-Temperature Ceramic Composites and Protective Coatings” [in Russian], VIAM, Moscow, 2014, p. 12.Google Scholar
  11. 11.
    A. M. Shestakov, N. I. Shvets, et al., Russ. J. Appl. Chem., 88, 1481 (2015).CrossRefGoogle Scholar
  12. 12.
    B. A. Zaitsev and I. D. Shvabskaya, Russ. J. Appl. Chem., 83, 1270 (2010).CrossRefGoogle Scholar
  13. 13.
    M. I. Valueva, I. V. Zelenina, et al., Tr. VIAM, No. 10, 9 (2017).Google Scholar
  14. 14.
    H. Q. Ly, R. Taylor, et al., J. Mater. Sci., 36, 4037 (2001).CrossRefGoogle Scholar
  15. 15.
    E. Moukhina, J. Therm. Anal. Calorim., 109, 1203 (2012).CrossRefGoogle Scholar
  16. 16.
    M. A. Khaskov, A. M. Shestakov, et al., Zh. Prikl. Khim., 91, 890 (2018).Google Scholar
  17. 17.
    M. A. Khaskov, Zh. Prikl. Khim., 89, 510 (2016).Google Scholar
  18. 18.
    S. Music, N. Filipovic-Vincekovic, and L. Sekovanic, Braz. J. Chem. Eng., 28, 89 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Khaskov
    • 1
    Email author
  • E. A. Sul’yanova
    • 1
  • M. I. Valueva
    • 1
  • E. A. Davydova
    • 1
  1. 1.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations