Advertisement

Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions

  • I. S. MakarovEmail author
  • L. K. Golova
  • M. I. Vinogradov
  • I. S. Levin
  • S. E. Sorokin
CHEMISTRY AND TECHNOLOGY OF CHEMICAL FIBERS

Structural and morphological evolution of polyacrylonitrile (PAN) samples from starting powder of a ternary copolymer to fibers produced from concentrated solutions of PAN in N-methylmorpholine-N-oxide (NMMO) was studied using x-ray diffraction for the first time. X-ray exposures in transmission and reflection geometries allowed the structures of outer and inner parts of the PAN fibers to be differentiated. It was shown that a shell—core structure formed in the precipitation bath during fiber spinning. A comparison of x-ray diffraction patterns of fibers spun using the NMMO process and industrial samples spun from DMSO and aqueous sodium thiocyanate solutions did not reveal fundamental structural differences.

Notes

We thank L. K. Kuznetsova and V. G. Kulichikhin. The work was performed in the framework of a State Task for the IPS, RAS.

References

  1. 1.
    X. Zhang, Fundamentals of Fiber Science, DEStech Publications, Lancaster, 2014, p. 426.Google Scholar
  2. 2.
    S. P. Papkov, Physicochemical Bases of Synthetic Fiber Production [in Russian], Khimiya, Moscow, 1972, p. 312.Google Scholar
  3. 3.
    S. K. Atureliya and Z. Bashir, Polymer, 34, No. 24, 5116-5122 (1993); DOI:  https://doi.org/10.1016/0032-3861(93)90256-A.CrossRefGoogle Scholar
  4. 4.
    H. S. Kim and H. H. Cho, J. Korean Fiber Soc., 29, No. 2, 101-106 (1992); DOI:  https://doi.org/10.1002/app.1993.070470218.Google Scholar
  5. 5.
    M. Sokol, J. Grobelny, and E. Turska, Polymer, 28, No. 5, 843-846 (1987); DOI:  https://doi.org/10.1016/0032-3861(87)90238-2.CrossRefGoogle Scholar
  6. 6.
    E. Fitzer and W. Frohs, Khim. Volokna, No. 2, 14-17 (1992).Google Scholar
  7. 7.
    A. Gupta and R. Singhal, J. Polym. Sci., Polym. Phys., 21, No. 11, 2243-2262 (1983); DOI:  https://doi.org/10.1002/pol.1983.180211103.CrossRefGoogle Scholar
  8. 8.
    H. Jiang, D. Pan, and M. Zhou, Global J. Eng. Sci. Res. Manage., 2, No. 8, 9-15 (2015).Google Scholar
  9. 9.
    V. G. Kulichikhin, I. Yu. Skvortsov, et al., Adv. Polym. Technol., (2016); DOI:  https://doi.org/10.1002/adv.21761.
  10. 10.
    S. M. Pawde and K. Deshmukh, J. Appl. Polym. Sci., 110, No. 5, 2569-2578 (2008); DOI:  https://doi.org/10.1002/app.28761.CrossRefGoogle Scholar
  11. 11.
    X. D. Liu and W. Ruland, Macromolecules, 26, No. 12, 3030-3036 (1993); DOI:  https://doi.org/10.1021/ma00064a006.CrossRefGoogle Scholar
  12. 12.
    X. Zeng, J. Chen, et al., J. Appl. Polym. Sci., 114, 3621–3625 (2009); DOI:  https://doi.org/10.1002/app.31020.CrossRefGoogle Scholar
  13. 13.
    A. T. Serkov, Viscose Fibers [in Russian], Khimiya, Moscow, 1980, p. 296.Google Scholar
  14. 14.
    L. A. Zlatoustova, “Production of polyacrylonitrile cords for carbon fibers,” Candidate Dissertation in Chemical Sciences, Moscow, 2006.Google Scholar
  15. 15.
    Y. X. Wang, C. G. Wang, et al., J. Appl. Polym. Sci., 104, 1026-1037 (2007); DOI:  https://doi.org/10.1002/app.24793.CrossRefGoogle Scholar
  16. 16.
    Q. Ouyang, Y. S. Chen, et al., J. Macromol. Sci., Part B: Phys., 50, 2417-2427 (2011); DOI:  https://doi.org/10.1080/00222348.2011.564104.CrossRefGoogle Scholar
  17. 17.
    H. Ge, H. Liu, et al., J. Appl. Polym. Sci., 108, 947-952 (2008); DOI:  https://doi.org/10.1002/app.27286.CrossRefGoogle Scholar
  18. 18.
    Yu. P. Semenov, V. P. Kostromin, et al., Fibre Chem., 3, No. 4, 365-368 (1972); DOI: https://doi.org/10.1007/BF00543567.CrossRefGoogle Scholar
  19. 19.
    M. M. Iovleva, S. I. Banduryan, et al., Fibre Chem., 31, No. 2, 140-142 (1999); DOI: https://doi.org/10.1007/BF02358643.CrossRefGoogle Scholar
  20. 20.
    V. G. Kulichikhin, L. K. Golova, et al., Polym. Sci., Ser. C, 58, No. 1, 74-84 (2016); DOI:  https://doi.org/10.1134/S1811238216010069.CrossRefGoogle Scholar
  21. 21.
    V. Kulichikhin, L. Golova, et al., Eur. Polym. J., 92, 326-337 (2017); DOI:  https://doi.org/10.1016/j.eurpolymj.2017.05.021.CrossRefGoogle Scholar
  22. 22.
    L. Golova, I. Makarov, et al., “Structure – Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom,” in: Cellulose, InTech Publishing, New York, 2013, p. 377; DOI: 10.5772/51688.Google Scholar
  23. 23.
    L. Boguslavsky and S. Margel, Glass Phys Chem., 31, No. 1, 102-114 (2005); DOI:  https://doi.org/10.1007/s10720-005-0030-z.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. S. Makarov
    • 1
    Email author
  • L. K. Golova
    • 1
  • M. I. Vinogradov
    • 1
  • I. S. Levin
    • 1
  • S. E. Sorokin
    • 1
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisMoscowRussia

Personalised recommendations