Advertisement

Fibre Chemistry

, Volume 50, Issue 4, pp 349–353 | Cite as

Preparation and Properties of Organic-Inorganic Composites Based on Hydroxyethyl Cellulose

  • O. V. AlekseevaEmail author
  • A. N. Rodionova
  • N. A. Bagrovskaya
  • A. V. Noskov
  • A. V. Agafonov
Article
  • 5 Downloads

Hydroxyethyl cellulose is modified with organobentonite particles using mechanical dispersion to produce polymer films. The effect of filler concentration on the structure, strength, and biological activity of the polymer composites was studied.

Notes

The work was sponsored by the Russian Foundation for Basic Research Grant No. 18-43-370015-p-_a.

References

  1. 1.
    V. A. Petrova, L. A. Nud’ga, et al., Vysokomol. Soedin., Ser. A, 54, No. 3, 422-420 (2012).Google Scholar
  2. 2.
    S. S. Ray and M. Bousmina, Prog. Mater. Sci., 5, No. 8, 962-968 (2005).Google Scholar
  3. 3.
    M. Xue, Y. Ling, et al., J. Chromatogr. B, 912, 1-7 (2013).CrossRefGoogle Scholar
  4. 4.
    O. V. Alekseeva, A. N. Rodionova, et al., Cellulose, 24, No. 4, 1825-1836 (2017).CrossRefGoogle Scholar
  5. 5.
    C.-H. Zhou, D. Zhang, et al., Chem. Eng. J., 209, 223-234 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Tunc and O. Duman, LWT – Food Sci. Technol., 44, No. 2, 465-472 (2011).CrossRefGoogle Scholar
  7. 7.
    O. V. Alekseeva, A. N. Rodionova, et al., Perspekt. Mater., No. 4, 43-52 (2016).Google Scholar
  8. 8.
    H. Liu, D. Chaudhary, et al., Carbohydr. Polym., 83, No. 4, 1591-1597 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Arora, V. Choudhary, and D. K. Sharma, J. Polym. Res., 18, No. 4, 843-857 (2011).CrossRefGoogle Scholar
  10. 10.
    S. M. Lee and D. Tiwari, Appl. Clay Sci., 59-60, 84-102 (2012).Google Scholar
  11. 11.
    O. V. Alekseeva, A. N. Rodionova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 57, No. 1, 68-72 (2014).Google Scholar
  12. 12.
    K. S. W. Sing, Adv. Colloid Interface Sci., 76-77, 3-11 (1998).Google Scholar
  13. 13.
    K. Luo, J. Yin, et al., Macromol. Biosci., 8, No. 2, 184-192 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Guinier, X-ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies, Dover Publications, New York, 1994, 400 pp.Google Scholar
  15. 15.
    K. J. Shah, M. K. Mishra, et al., J. Colloid Interface Sci., 407, 493-499 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Onoshima and T. Imae, Soft Matter, No. 2, 141-148 (2006).Google Scholar
  17. 17.
    K. C. Cole, Macromolecules, 41, No. 3, 834-843 (2008).CrossRefGoogle Scholar
  18. 18.
    R. Chen, C. Yi, et al., Carbohydr. Polym., 81, 188-195 (2010).CrossRefGoogle Scholar
  19. 19.
    H. S. Barud, A. M. A. Junior, et al., Thermochim. Acta, 471, No. 1-2, 61-69 (2008).CrossRefGoogle Scholar
  20. 20.
    I. V. Koteneva, V. I. Sidorov, and I. A. Kotlyarova, Khim. Rastit. Syr2ya, No. 1, 21-24 (2011).Google Scholar
  21. 21.
    H. Zhang, X. Zeng, et al., Carbohydr. Polym., 136, 493-498 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Alekseeva
    • 1
    Email author
  • A. N. Rodionova
    • 1
  • N. A. Bagrovskaya
    • 1
  • A. V. Noskov
    • 1
  • A. V. Agafonov
    • 1
  1. 1.G. A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations