Advertisement

Fibre Chemistry

, Volume 50, Issue 4, pp 332–335 | Cite as

Self-Assembly Processes in Aqueous Solutions of Heatsensitive Linear Copolymers Derived from N(Dimethylamino)Ethyl Methacrylate

  • M. A. SimonovaEmail author
  • A. R. Khairullin
  • V. O. Tyurina
  • S. I. Kamorina
  • D. M. Kamorin
  • A. Yu. Sadikov
  • A. P. Filippov
Article
  • 5 Downloads

Light scattering and turbidimetry were used to study self assembly processes of macromolecules of a linear copolymer derived from 2(dimethylamino)ethyl methacrylate in aqueous solution. A sample with molecular mass 24,000 g/mole was studied. A structural phase transition is observed with increasing temperature in solutions of this copolymer. The temperatures for the onset and completion of phase separation as well as the width of this interval increase with decreasing concentration of the copolymer in solution.

Notes

This polymer synthesis study was carried out with the financial support of the Russian Basic Research Fund in the framework of Scientific Project No. 183300576 mol_a.

References

  1. 1.
    Menglian Wei, Yongfeng Gao, et al., Polymer Chem., 8, 127 (2017).CrossRefGoogle Scholar
  2. 2.
    G. Nieves, E. Carlos, and J. Roma’n, Macromol., 38, 9298 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Kumar, A. Srivastava, et al., Prog. Polym. Sci., 32, 1205 (2007).CrossRefGoogle Scholar
  4. 4.
    A. K. Bajpai, S. K. Shukla, et al., Prog. Polym. Sci., 33, 1088 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Newman, W. R. Krigbaum, et al., J. Polymer Sci., 14, 451 (1954).CrossRefGoogle Scholar
  6. 6.
    M. A. Simonova, N. V. Zakharova, et al., Int. J. Polymer Anal. Charact., 23, 236243 (2018).Google Scholar
  7. 7.
    I. Dimitrov, B. Trzebicka, et al., Prog. Polymer Sci., 32, 12751343 (2007).CrossRefGoogle Scholar
  8. 8.
    E. B. Tarabukina, M. A. Simonova, et al., Int. J. Polymer Anal. Charact., 21, 1117 (2016).Google Scholar
  9. 9.
    D. M. Kamorin, K. V. Shirsin, et al., Polymer Sci., 8, 171174 (2015).Google Scholar
  10. 10.
    L. Martin-Gomis, Cuervo Rodriguez, et al., J. Polymer Sci., Part A: Polymer Chem., 41, No. 17, 26592666 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Lokaj, D. Doskocilova, and F. Hrabak, Makromol. Chem., 185, 11771186 (1984).CrossRefGoogle Scholar
  12. 12.
    I. Sideridou-Karayannidou and G. Seretoudi, J. Polymer Sci., 64, No. 9, 18151824 (1997).Google Scholar
  13. 13.
    R. Kumar, N. Swarnalatha, et al., J. Molecular Liquids, 163, 5763 (2011).CrossRefGoogle Scholar
  14. 14.
    F. A. Plamper, A. Schmalz, et al., J. Am. Chem. Soc., 129, 1453814539 (2007).CrossRefGoogle Scholar
  15. 15.
    O. A. Kazantsev, A. P. Sivokhin, et al., Klei. GermTekhn., No. 9, 2730 (2014).Google Scholar
  16. 16.
    V. G. Shibalovich, D. Yu. Efimova, and A. F. Nikolaev, Plast. Massy, No. 3, 2527 (2000).Google Scholar
  17. 17.
    H. Mori, A. Walther, et al., Macromol., 37, 20542066 (2004).Google Scholar
  18. 18.
    M. A. Simonova, A. R. Khairullin, et al., Vestnik TVGU, Ser. Khim., No. 3, 3843 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Simonova
    • 1
    Email author
  • A. R. Khairullin
    • 1
  • V. O. Tyurina
    • 2
  • S. I. Kamorina
    • 4
  • D. M. Kamorin
    • 3
    • 4
  • A. Yu. Sadikov
    • 3
    • 4
  • A. P. Filippov
    • 1
  1. 1.Institute of High Molecular Weight CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Higher School of Technology and EnergySt. PetersburgRussia
  3. 3.R. E. Alekseev Nizhny Novgorod State Technical UniversityDzherzhinskRussia
  4. 4.N. I. Lobachevksy State University of Nizhny Novgorod—National Research InstituteNizhny NovgorodRussia

Personalised recommendations