Advertisement

Fibre Chemistry

, Volume 50, Issue 4, pp 301–305 | Cite as

Monometallic Ru, Au, and Pt Catalysts Deposited on Carbon Nanotubes for Oxidative Steam Reforming of Methanol

  • O. ShtykaEmail author
  • Y. Higashino
  • A. Kedziora
  • S. Dubkov
  • D. Gromov
  • T. P. Maniecki
Article
  • 6 Downloads

The results are presented from investigations into the effect of oxidative treatment of carbon nanotubes on the physicochemical and catalytic characteristics of gold, ruthenium, and platinum catalysts deposited on them. The surface of multiwalled carbon nanotubes was functionalized in an acidified solution of potassium permanganate. The physicochemical characteristics of the carbon nanotubes and deposited catalysts were studied by the following methods: BET (the Brunauer–Emmet–Teller method), TPR-H (temperature-programmed reduction with hydrogen), XPA (x-ray diffraction), Fourier IRS (infrared spectroscopy with Fourier transformation), TGA (thermogravimetric analysis), scanning electron microscopy (SEM), and chemisorptions of CO and H2. The catalytic activity was determined in a flow-type quartz reactor in the range of 250-300°C at atmospheric pressure.

References

  1. 1.
    J. Che, T. Cagin, W. Goddard, Nanotechnology, 11, No. 2, 65 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Balandin, Nature Materials, 10, No. 8, 569-581 (2011).CrossRefGoogle Scholar
  3. 3.
    B. Kaushik, M. Majumder, Springer Briefs in Applied Sciences and Technology, Springer, Germany (2015).Google Scholar
  4. 4.
    G. Hermanson, Bioconjugate Techniques. Third Edition, Elsevier, New York (2013).Google Scholar
  5. 5.
    S. Mallakpour, S. Soltanian, RSC Advances, 6, No. 111, 109916-109935 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Tessonnier, O. Ersen, et al., ACS nano, 3, No. 8, 2081-2089 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Chernyak, et al., Appl. Catalysis A: General, 523, 221-229 (2016).CrossRefGoogle Scholar
  8. 8.
    J. Kang, W. Deng, et. al., J. Energy Chemistry, 22, No. 2, 321-328 (2013).Google Scholar
  9. 9.
    P. Mierczynski, K. Vasilev, et. al., Catalysis Sci. Technol., 6, No. 12, 4168-4183 (2016).Google Scholar
  10. 10.
    C. Hsieh, J. Lin, J. Power Sources, 188, No. 2, 347-352 (2009).Google Scholar
  11. 11.
    C. Chen, J. Zhang, et. al., Chem. Commun., 49, 8151-8553 (2013).Google Scholar
  12. 12.
    J. Zhang, X. Liu, et al., Science, 322, No. 5898, 73-77 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Yoon, H. Bin Pan, et al., J. Phys. Chem. C, 113, No. 4, 1520-1525 (2009).CrossRefGoogle Scholar
  14. 14.
    X. Guo, J. Kim, G. Kim, Catalysis Today, 164, 336-340 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Mierczynski, K. Vasilev, et al., Appl. Catalysis B: Environmental, 185, 281-294 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. Shtyka
    • 1
    Email author
  • Y. Higashino
    • 2
  • A. Kedziora
    • 1
  • S. Dubkov
    • 3
  • D. Gromov
    • 3
  • T. P. Maniecki
    • 1
  1. 1.Lodzinski Technical University, Institute of General and Ecological ChemistryLodzinskiPoland
  2. 2.Tokyo Technological Institute, Department of Materials Science and EngineeringTokyoJapan
  3. 3.Moscow National Research UniversityMoscowRussia

Personalised recommendations