Advertisement

Fibre Chemistry

, Volume 48, Issue 4, pp 276–283 | Cite as

Optimal Conditions for Compaction and Monolith Production of Ultra-High-Molecular-Weight Polyethylene Reactor Powders

  • I. N. Mezheumov
  • A. A. Pogudkina
  • S. D. Khizhnyak
  • A. I. Ivanova
  • G. I. Markin
  • V. P. Galitsyn
  • P. M. Pakhomov
Article

A special cell (press-form) was fabricated for compaction and monolith production of UHMWPE reactor powder over broad ranges of pressure and temperature. The effect of applied pressure on the compaction and the temperature for UHMWPE powder monolith production was studied using scanning electron microscopy and FTIR spectroscopy. It was found that stable tablets of reactor powder were formed and the compaction was complete at 136 MPa for 8 min and more. The optimal temperature range for monolith production using compacted tablets of UHMWPE powder was 135-140°C.

Keywords

Compaction UHMWPE Reactor Powder UHMWPE Fiber Orientational Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

The work was supported financially by the RF Ministry of Education and Science under the auspices of state scientific activities. The studies used equipment of the CCU at TvSU.

References

  1. 1.
    P. M. Pakhomov, V. P. Galitsyn, et al., High-strength and High-modulus Polymer Fibers [in Russian], TvGU, Tver, 2012, 327 pp.Google Scholar
  2. 2.
    Y. L. Joo, H. Zhou, et al., J. Appl. Polym. Sci., 98, 718 (2005).CrossRefGoogle Scholar
  3. 3.
    V. E. Sitnikova, A. A. Kotova, et al., Khim. Volokna, No. 6, 3, 2012.Google Scholar
  4. 4.
    E. M. Ivan’kova, L. P. Myasnikova, et al., J. Macromol. Sci., Part B: Phys., 40, No. 5, 813 (2001).CrossRefGoogle Scholar
  5. 5.
    V. A. Aulov, S. V. Makarov, et al., Vysokomol. Soedin., Ser. A, 43, No. 10, 1766 (2001).Google Scholar
  6. 6.
    A. N. Ozerin, S. S. Ivanchev, et al., Vysokomol. Soedin., Ser. A, 54, No. 12, 1731 (2012).Google Scholar
  7. 7.
    P. M. Pakhomov, A. A. Pogudkina, et al., Fibre Chem., 46, No. 1, 5 (2014).CrossRefGoogle Scholar
  8. 8.
    H. Uehara, T. Tamura, et al., J. Mater. Chem. A, No. 2, 5252 (2014).Google Scholar
  9. 9.
    A. A. Pogudkina, I. N. Mezheumov, et al., Physical Chemistry of Polymers [in Russian], TvGU, Tver, 2013, No. 19, p. 75.Google Scholar
  10. 10.
    J. Dechant, R. Danz, W. Kimmer, and R. Schmolke, Ultrarotspektroskopische Untersuchungen an Polymeren, Akademie-Verlag, Berlin, 1972 [Russian translation, Khimiya, Moscow, 1976, 471 pp.].Google Scholar
  11. 11.
    S. D. Khizhnyak, M. N. Malanin, et al., Vysokomol. Soedin., Ser. B, 50, No. 6, 1116 (2008).Google Scholar
  12. 12.
    V. A. Aulov and I. O. Kuchkina, Polym. Sci., Ser. A, 51, No. 8, 877 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • I. N. Mezheumov
    • 1
  • A. A. Pogudkina
    • 1
  • S. D. Khizhnyak
    • 1
  • A. I. Ivanova
    • 1
  • G. I. Markin
    • 1
  • V. P. Galitsyn
    • 2
  • P. M. Pakhomov
    • 1
  1. 1.Tver State UniversityTverRussia
  2. 2.Research Institute of Synthetic Fiber with Pilot PlantTverRussia

Personalised recommendations