Advertisement

Fibre Chemistry

, Volume 41, Issue 6, pp 391–401 | Cite as

Overview of Poly(lactic acid) (PLA) Fibre

Part I: Production, Properties, Performance, Environmental Impact, and End-use Applications of Poly(lactic acid) Fibres
  • Ozan AvincEmail author
  • Akbar Khoddami
Article

Poly(lactic acid) (PLA), the first melt-processable synthetic fibre produced from annually renewable resources, combines ecological advantages with excellent performance in textiles. PLA successfully bridges the gap between synthetic and natural fibres and finds a wide range of uses, from medical and pharmaceutical applications to environmentally benign film and fibres for packaging, houseware, and clothing. Ease of melt processing, unique property spectrum, renewable source origin, and ease of composting and recycling at the end of its useful life has led to PLA fibres finding growing interest and acceptance over a range of commercial textile sectors. Our review of poly(lactic acid) (PLA) fibre is divided into two parts. Part I of this review gives information about production, properties, performance, environmental impact, and enduse applications of PLA fibres. The aim of Part II is to review the wet processing (pretreatment, dyeing, clearing, subsequent finishing treatments, washing, etc.) of PLA fibre and its effects on the fibre. These were accomplished through a broad literature survey, including recent research and development in the area.

Keywords

Lactic Acid Lactide PLLA Limit Oxygen Index Lactic Acid Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Drumright, P. R. Gruber and D. E. Henton, Adv. Mater., 12 (No. 23), 1841 (2000).CrossRefGoogle Scholar
  2. 2.
    J. S. Dugan, Novel Properties of PLA fibers, Research Fiber Innovation technology, Inc, INTC 2000, Texas, USA, http://www.fitfibers.com/publications.htm, 2000.
  3. 3.
    D. J. Sawyer. Nonwovens World, 10 (2), 49 (2001).Google Scholar
  4. 4.
    W. Hoogsteen, A. R. Postema, A. J. Pennings, G. T. Brinke, and P. Zugen. Macromolecules, 23, 634 (1990).CrossRefGoogle Scholar
  5. 5.
    H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 67, 405 (1998).CrossRefGoogle Scholar
  6. 6.
    L. I. Palade, H. J. Lehermeier, and J. R. Dorgan, Macromolecules, 34, 1384 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Jacobsen, P. Degée, and H.G. Fritz, Polym. Eng. Sci., 39(7), 1311 (1999).CrossRefGoogle Scholar
  8. 8.
    H. R. Kricheldorf, Chemosphere, 43, 49 (2001).CrossRefGoogle Scholar
  9. 9.
    E. S. Lipinsky and R. G. Sinclair, Chem. Eng. Prog., 82(8), 26 (1986).Google Scholar
  10. 10.
    M. Vert, G. Schwacch, and J. Coudane, J. Macromol. Sci. Pure., A32, 787 (1995).CrossRefGoogle Scholar
  11. 11.
    J. Lunt, Int. Fiber J., 15(3), 48 (2000).Google Scholar
  12. 12.
    B. Linnemann, M, S. Harwoko, T. Gries. Chemical Fibers International, Vol. 53, December 2003, 426-433.Google Scholar
  13. 13.
    M. Dartee, J. Lunt, and A. Shafer, Man-Made Fiber Year Book, August, 29 (2001).Google Scholar
  14. 14.
    R. S. Blackburn, “Biodegradable and sustainable fibres,” Woodhead Publishing Limited, 2005.Google Scholar
  15. 15.
    P. Gruber and M. O’ Brien, Polylactides “NatureWorksTM PLA,” Biopolymers, Polyester III: Applications and Commercial Products, 2002.Google Scholar
  16. 16.
    C. Lui, JCNN News Summaries - Japan Corporate News Network, Apr 5, 2006.Google Scholar
  17. 17.
    K. Yoshikazu, Dyeing Ind., 46(No.12), 563 (1998).Google Scholar
  18. 18.
    M. Kenjiro, High Polym., Japan, 52(No.11), 840 (2003).Google Scholar
  19. 19.
    A. K. Agrawal and R. Bhalla, J Macromol. Sci., Part-C Polym. Rev., C43(No.4), 479 (2003).Google Scholar
  20. 20.
    Asian Textile Business, 564, November, 19 (2001).Google Scholar
  21. 21.
    M. Matsui, Chem. Fibers Int., 46(No.6), 318 (1996).Google Scholar
  22. 22.
    Chem. Fibers Int., 48(No.2), 89 (1998).Google Scholar
  23. 23.
    M. Dartee, J. Lunt, and Shafer, Chem. Fibers Int., 50(No.6), 546 (2000).Google Scholar
  24. 24.
    R. Hagen, Man-Made Year Book, Chem. Fibers Int., 6 (2001).Google Scholar
  25. 25.
    K. Yamanaka, Chem. Fibers Int., 49(No.6), 501 (1999).Google Scholar
  26. 26.
    P.A. Koch, Chem. Fibers Int., 53(December), 426 (2003).Google Scholar
  27. 27.
    C. Woodings, Nonwovens World, 10(2), 71 (2001).Google Scholar
  28. 28.
    J. Lunt and A. Shafer, J. of Ind. Text., 29, 191 (2000).CrossRefGoogle Scholar
  29. 29.
    S. S. Mahish and V. Agarwal, Asian Text. J., 10(12), 42 (2001).Google Scholar
  30. 30.
    R. Hagen, Chem. Fibers Int., 50, 540 (2000).Google Scholar
  31. 31.
    E. Gross, Text. World, 150(2), 76 (2002).Google Scholar
  32. 32.
    From Corn to Plastics. http://www.natureworksllc.com, Polymer Information, IngeoTM fi ber technical information, January 2003.
  33. 33.
    D. J. Sawyer, Macromol. Symp., 201, 271 (2003).CrossRefGoogle Scholar
  34. 34.
    J. Lunt, Text. Mag., No.3, 15 (2004).Google Scholar
  35. 35.
    J. C. Bogaert and P. Coszach, Nonwovens World, 9, 83 (2000).Google Scholar
  36. 36.
    W. Zhong, J. Ge, Z. Gu, W. Li, X. Chen, Y. Zang, Y. Yang, J. of Appl. Polym. Sci., 74, 2546 (1999).CrossRefGoogle Scholar
  37. 37.
    L. R. G. Treloar, “Introduction to Polymer Science,” The Wykeham Science Series, Wykeham Publications (London) Ltd, 1970.Google Scholar
  38. 38.
    J. R. Dorgan, H. J. Lehermeier, L. Palade, and J. Cicero, Macromol. Symp., 175, 55 (2001).CrossRefGoogle Scholar
  39. 39.
    Cargill, Inc., US Patent #5142023.Google Scholar
  40. 40.
    S. Jacobsen, H.G. Fritz, P. Degée, P. Dubois, and R. Jérôme, Ind. Crops Prod., 11, 265 (2000).CrossRefGoogle Scholar
  41. 41.
    K.E. Perepelkin, Fibre Chem., 34(No.2), 85 (2002).CrossRefGoogle Scholar
  42. 42.
    M. H. Hartman, “Biopolymers from renewable resources,” Berlin:Springer, 1998.Google Scholar
  43. 43.
    G. Schmack, B. Tändler, R. Vogel, R. Beyreuther, S. Jacobsen, and H. G. Fritz, J. Appl. Polym. Sci., 73, 2785 (1999).CrossRefGoogle Scholar
  44. 44.
    J. Suesat, Ph.D. Dissertation, UMIST, Manchester, 2004.Google Scholar
  45. 45.
    D. Farrington, Private Communication, NatureWorks LLC.Google Scholar
  46. 46.
    S. Brochu, R. E. Prud’homme, I. Barakat, and R. Jérôme, Macromolecules, 28, 5230 (1995).CrossRefGoogle Scholar
  47. 47.
    H. Tsuji and Y. Ikada, Macromolecules, 26, 6918 (1993).CrossRefGoogle Scholar
  48. 48.
    T. Okihara, M. Tsuji, A. Kawaguchi, and K. I. Katayama, J. Macromol. Sci.-Phys., B30(1&2), 119 (1991).CrossRefGoogle Scholar
  49. 49.
    J. Lunt, Polym. Degrad. Stab., 59, 145 (1998).CrossRefGoogle Scholar
  50. 50.
    K. Sawada and M. Ueda, Dyes Pigments, 74, 81 (2007).CrossRefGoogle Scholar
  51. 51.
    E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, Polym. Degrad. Stab., 80(3), 403 (2003).CrossRefGoogle Scholar
  52. 52.
    Information from NatureWorks LLC, www.natureworksllc.com .
  53. 53.
    S. Jacobsen, H.G. Fritz, Ph. Degée, Ph. Dubois, and R. Jérôme, Polymer, 41, 3395 (2000).CrossRefGoogle Scholar
  54. 54.
    C. Hawkyard, “Synthetic fi bre dyeing,” Society of Dyers and Colourists, 2004.Google Scholar
  55. 55.
    E. T. H. Vink, K. R. Rabago, D. A. Glassner, B. Springs, R. P. O’Connor, J. Kolstad, and P. R. Gruber, Macromol. Biosci., 4, 551 (2004).CrossRefGoogle Scholar
  56. 56.
    J. R. Dorgan and D. Knauss, Environmentally Benign Polymeric Packaging Materials from Renewable Resources. www.es.epa.gov, Progress Report 2000.
  57. 57.
    J. R. Dorgan, “3rd Annual green chemistry and engineering conference proceedings” (Washington, D. C.), Poly (lactic acid) Properties and Prospects of an Environmentally Benign Plastic, p.145, 1999.Google Scholar
  58. 58.
    D. L. Kirschbaum, “Fiber Producer/Textile Industry Conference”, Clemson Univ., Greenville, USA, October 24-25, p.1, 2000.Google Scholar
  59. 59.
    J. Yu, J. of China Text. Univ., 16 (Eng.), 1, 59 (1999).Google Scholar
  60. 60.
    M. Dauner and H. Planck, Text. Asia, 30(2), 33 (1999).Google Scholar
  61. 61.
    S. K. Varshney, O. Hnojewyj, J. Zhang, and P. Rivelli, US Patent Application, 0225472 (2007).Google Scholar
  62. 62.
    L. J. Fetters, D. J. Lohse, D. Richter, T.A. Witten, and A. Zirkel, Macromolecules, 27, 4639 (1994).CrossRefGoogle Scholar
  63. 63.
    H. Tsuji and K. Sumida, J. Appl. Polym. Sci., 79, 1582 (2001).CrossRefGoogle Scholar
  64. 64.
    N. C. Bleach, K. E. Tanner, M. Kellomaki, and P. Tormala,, J. Mater. Sci.: Mater. Med., 12, 911 (2001).CrossRefGoogle Scholar
  65. 65.
    Y. Ikada and H.Tsuji, Macromol. Rapid Commun., 21, 117 (2000).CrossRefGoogle Scholar
  66. 66.
    H. J. Lehermeier, J. R. Dorgan, and D. Way, J. Membr. Sci, 190, 243 (2001).CrossRefGoogle Scholar
  67. 67.
    B. C. Benicewicz, and P. K. Hopper, J. Bioact. Comp. Polym., 5, 453 (1995).CrossRefGoogle Scholar
  68. 68.
    M. Vert, Macromol. Symp., 153, 333 (2000).CrossRefGoogle Scholar
  69. 69.
    H. Tsuji, “Polylactides”, in: Biopolymers. Polyesters III. Applications and Commercial Products, 1st edition, Wiley-VCH Verlag GmbH, Weinheim, p.129-177, 2002.Google Scholar
  70. 70.
    Y. Ikada, Adv. Eng. Mater., 1, 67 (1999).CrossRefGoogle Scholar
  71. 71.
    A. G. A. Coombes and M. C. Meikle, Clin. Mater., 17, 35 (1994).CrossRefGoogle Scholar
  72. 72.
    T. Ouchi and Y. Ohya, J. Polym. Sci., Part A: Polym. Chem., 42, 453 (2004).CrossRefGoogle Scholar
  73. 73.
    M. Hiljanen-Vainio, P. Varpomaa, J. Seppala, and P. Tormala, Macromol. Chem. Phys., 197, 1503 (1996).CrossRefGoogle Scholar
  74. 74.
    A. C. Albertsson and I. K.Varma, Biomacromolecules, 4, 1466 (2003).CrossRefGoogle Scholar
  75. 75.
    P. Mainil-Varlet, R. Curtis, and S. Gogolewski, J. Biomed. Mater. Res., 36, 360 (1997).CrossRefGoogle Scholar
  76. 76.
    A. G. A. Coombes and J. D. Heckman, Biomaterials, 13, 297 (1992).CrossRefGoogle Scholar
  77. 77.
    H. Tsuji, Polymer, 41, 3621 (2000).CrossRefGoogle Scholar
  78. 78.
    S. Hsu and W. C. Chen, Biomaterials, 21, 359 (2000).CrossRefGoogle Scholar
  79. 79.
    M. H. Hartmann, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 40, 570 (1999).Google Scholar
  80. 80.
    R. Auras, B. Harte, and S. Sekle, Macromol. Biosci., 4, 835 (2004).CrossRefGoogle Scholar
  81. 81.
    K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995).CrossRefGoogle Scholar
  82. 82.
    R. A. Zoppi, S. Contant, E. A. R. Duek, F. R. Marques, M. L. F. Wada, and S. P. Nunes, Polymer, 40, 3275 (1999).CrossRefGoogle Scholar
  83. 83.
    N. N., Med. Text., 18, November, 5 (1998).Google Scholar
  84. 84.
    D. A. Wood, Int. J. Pharm., 7, 1 (1980).CrossRefGoogle Scholar
  85. 85.
    B. Gupta, N. Revagade, and J. Hilborn, Prog. Polym. Sci., 32, 455 (2007).CrossRefGoogle Scholar
  86. 86.
    M. J. D. Eenink, J. Feijien, J. Olijslager, J. H. M. Albers, J. C. Rieke, and P. J. Greidanus, J. Contr. Rel., 6, 225 (1987).CrossRefGoogle Scholar
  87. 87.
    O. Laitinen, P. Tormala, R. Taurio, K. Skutnabb, K. Saarelainen, and T. Iivonen, Biomaterials, 13, 1012 (1992).CrossRefGoogle Scholar
  88. 88.
    D. H. Müler and A. Krobjilowski, Nonwovens World, 11, 62 (2002).Google Scholar
  89. 89.
    T. Jin and H. Zhang, J. Food Sci., 73, M127 (2008).CrossRefGoogle Scholar
  90. 90.
    M. Mutsuga, Y. Kawamura, and K. Tanamoto, Food Additives Contam., 25, 1283 (2008).CrossRefGoogle Scholar
  91. 91.
    J. Baillie, Packag. Week, 13, 1997.Google Scholar
  92. 92.
    R. Hagen, Chem. Fibers Int., 50, December, 540 (2000).Google Scholar
  93. 93.
    J. S. Dugan, Int. Nonwovens J., 10(3), 29 (2001).Google Scholar
  94. 94.
    Int. Fiber J., 15(6), 70 (2000).Google Scholar
  95. 95.
    Text. Mon., Jul/Aug, 18 (2001).Google Scholar
  96. 96.
    M. Dartee, “Man-Made Fibres Congress,” Dorbirn, Austria, September 19-21, 2001.Google Scholar
  97. 97.
    J. Lunt, Tech. Text. Int., 9(10), 11 (2000).Google Scholar
  98. 98.
    R. R. Bommu, T. Nakamura, K. Ishii, H. Kubokawa, K. Mogi and Y. Kamiishi, “AATCC International Conference and Exhibition,” 2001.Google Scholar
  99. 99.
    M. Matsui and Y. Kondo, “35th International Man-Made Fibers Congress,” Dorbin/Austria, September 25–27, p.1-10, 1996.Google Scholar
  100. 100.
    S. Li, M. Tenon, H. Garreau, C. Braud, and M. Vert, Polym. Degrad. Stab., 67, 85 (2000).CrossRefGoogle Scholar
  101. 101.
    J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996).CrossRefGoogle Scholar
  102. 102.
    K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988).CrossRefGoogle Scholar
  103. 103.
    A. Södergård and M. Stolt, Prog. Polym. Sci., 1123 (2002).Google Scholar
  104. 104.
    H. Tsuji and Y. Ikada, Polymer, 36(14), 2709 (1995).CrossRefGoogle Scholar
  105. 105.
    R. A. Auras, B. Harte, S. Selke, and R. J. Herandez, “WMU Barrier Coating Symposium,” Michigan, USA, 2002.Google Scholar
  106. 106.
    IngeoTM Fibres bring natural performance – low odor. Testing by Odor Science and Engineering Inc., Tech. Bull., 290904.Google Scholar
  107. 107.
    H. M. Behery, “Effect of mechanical and physical properties on fabric hand,” Woodhead Publishing Limited, 2005.Google Scholar
  108. 108.
    Fibre and Fabrics Properties Comparison. Fibers Information, IngeoTM fi ber technical information, March 2003.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of Textile EngineeringPamukkale UniversityDenizliTurkey
  2. 2.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations