Advertisement

Implication of DNA repair genes in Lynch-like syndrome

  • Rosa M. Xicola
  • Julia R. Clark
  • Timothy Carroll
  • Jurgis Alvikas
  • Priti Marwaha
  • Maureen R. Regan
  • Francesc Lopez-Giraldez
  • Jungmin Choi
  • Rajyasree Emmadi
  • Victoria Alagiozian-Angelova
  • Sonia S. Kupfer
  • Nathan A. Ellis
  • Xavier LlorEmail author
Original Article
  • 54 Downloads

Abstract

Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor’s mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.

Keywords

Colorectal cancer Lynch-like syndrome Lynch syndrome Lynch syndrome-like DNA repair genes 

Abbreviations

CRC

Colorectal cancer

LS

Lynch syndrome

LLS

Lynch-like syndrome

MMR

Mismatch repair

AA

African American

WEA

White European Americans

MSI

Microsatellite instability

MSS

Microsatellite stability

IHC

Immunohistochemistry

YCGA

Yale Center for Genome Analysis

SNVs

Single-nucleotide variants

Notes

Author contributions

RMX, NAE, and XL designed and supervised the overall project, analyzed and interpreted the data, and drafted the manuscript. They take full responsibility for the integrity of the data and the accuracy of the data analysis. RMX, TC, JA, PM, and MR processed, prepared and analyzed samples. JRC enrolled patients and acquired data. RMX performed the statistical analysis. RE, and VA revised and selected all pathology specimens. FL and JC supervised the genomic analysis. SSK critically revised the manuscript for important intellectual content.The study sponsors had no role in the design of the study; no role in the collection, analysis, or interpretation of the data; no role in the writing of the manuscript; and no role in the decision to submit the manuscript for publication.

Funding

This work was supported by grants from the American Cancer Society Illinois Division (Grant No. 223187, X.L.), the National Cancer Institute (Grant Nos. U01 CA153060 and P30 CA023074, N.A.E. and 1K01CA204431-01A1 R.M.X.) and the Prevent Cancer Foundation (RMX). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

None of the authors have any potential conflicts of interest to disclose that are relevant to the manuscript.

Supplementary material

10689_2019_128_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 63 kb)
10689_2019_128_MOESM2_ESM.docx (495 kb)
Supplementary material 2 (DOCX 495 kb)
10689_2019_128_MOESM3_ESM.docx (40 kb)
Supplementary material 3 (DOCX 39 kb)
10689_2019_128_MOESM4_ESM.docx (37 kb)
Supplementary material 4 (DOCX 37 kb)
10689_2019_128_MOESM5_ESM.docx (47 kb)
Supplementary material 5 (DOCX 47 kb)

References

  1. 1.
    Llor X (2012) When should we suspect hereditary colorectal cancer syndrome? Clin Gastroenterol Hepatol 10(4):363–367.  https://doi.org/10.1016/j.cgh.2011.12.022 CrossRefGoogle Scholar
  2. 2.
    Geurts-Giele WR, Leenen CH, Dubbink HJ et al (2014) Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol 234(4):548–559.  https://doi.org/10.1002/path.4419 CrossRefGoogle Scholar
  3. 3.
    Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146(3):643–646.  https://doi.org/10.1053/j.gastro.2013.12.002 CrossRefGoogle Scholar
  4. 4.
    Jansen AM, van Wezel T, van den Akker BE et al (2016) Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur J Hum Genet 24(7):1089–1092.  https://doi.org/10.1038/ejhg.2015.252 CrossRefGoogle Scholar
  5. 5.
    Morak M, Heidenreich B, Keller G et al (2014) Biallelic MUTYH mutations can mimic Lynch syndrome. Eur J Hum Genet 22(11):1334–1337.  https://doi.org/10.1038/ejhg.2014.15 CrossRefGoogle Scholar
  6. 6.
    Elsayed FA, Kets CM, Ruano D et al (2015) Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur J Hum Genet 23(8):1080–1084.  https://doi.org/10.1038/ejhg.2014.242 CrossRefGoogle Scholar
  7. 7.
    Rodriguez-Soler M, Perez-Carbonell L, Guarinos C et al (2013) Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology 144(5):926–932.  https://doi.org/10.1053/j.gastro.2013.01.044 CrossRefGoogle Scholar
  8. 8.
    Xicola RM, Gagnon M, Clark JR et al (2014) Excess of proximal microsatellite-stable colorectal cancer in African Americans from a multiethnic study. Clin Cancer Res 20(18):4962–4970.  https://doi.org/10.1158/1078-0432.ccr-14-0353 CrossRefGoogle Scholar
  9. 9.
    Xicola RM, Llor X, Pons E et al (2007) Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 99(3):244–252CrossRefGoogle Scholar
  10. 10.
    Goel A, Xicola RM, Nguyen TP et al (2010) Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology 138(5):1854–1862.  https://doi.org/10.1053/j.gastro.2010.01.035 CrossRefGoogle Scholar
  11. 11.
    Gausachs M, Mur P, Corral J et al (2012) MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet 20(7):762–768.  https://doi.org/10.1038/ejhg.2011.277 CrossRefGoogle Scholar
  12. 12.
    Llor X, Pons E, Xicola RM et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11(20):7304–7310CrossRefGoogle Scholar
  13. 13.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164.  https://doi.org/10.1093/nar/gkq603 CrossRefGoogle Scholar
  14. 14.
    Krumm N, Sudmant PH, Ko A et al (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22(8):1525–1532.  https://doi.org/10.1101/gr.138115.112 CrossRefGoogle Scholar
  15. 15.
    Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823.  https://doi.org/10.1038/nrc1951 CrossRefGoogle Scholar
  16. 16.
    Network TCGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):7330–7337.  https://doi.org/10.1038/nature11252 Google Scholar
  17. 17.
    Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219.  https://doi.org/10.1038/nbt.2514 CrossRefGoogle Scholar
  18. 18.
    Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14(12):786–800CrossRefGoogle Scholar
  19. 19.
    Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):7415–7421.  https://doi.org/10.1038/nature12477 CrossRefGoogle Scholar
  20. 20.
    Gehring JS, Fischer B, Lawrence M, Huber W (2015) SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btv408 Google Scholar
  21. 21.
    Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101(12):4164–4169.  https://doi.org/10.1073/pnas.0308531101 CrossRefGoogle Scholar
  22. 22.
    Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149(5):979–993.  https://doi.org/10.1016/j.cell.2012.04.024 CrossRefGoogle Scholar
  23. 23.
    Hutchins LN, Murphy SM, Singh P, Graber JH (2008) Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24(23):2684–2690.  https://doi.org/10.1093/bioinformatics/btn526 CrossRefGoogle Scholar
  24. 24.
    Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12):1540–1542.  https://doi.org/10.1093/bioinformatics/btl117 CrossRefGoogle Scholar
  25. 25.
    Weren RD, Ligtenberg MJ, Kets CM et al (2015) A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 47(6):668–671.  https://doi.org/10.1038/ng.3287 CrossRefGoogle Scholar
  26. 26.
    Segui N, Mina LB, Lazaro C et al (2015) Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology 149(3):563–566.  https://doi.org/10.1053/j.gastro.2015.05.056 CrossRefGoogle Scholar
  27. 27.
    Goldberg Y, Halpern N, Hubert A et al (2015) Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet 208(12):621–624.  https://doi.org/10.1016/j.cancergen.2015.10.001 CrossRefGoogle Scholar
  28. 28.
    Arora S, Yan H, Cho I et al (2015) Genetic variants that predispose to DNA double-strand breaks in lymphocytes from a subset of patients with familial colorectal carcinomas. Gastroenterology 149(7):1872–1883.  https://doi.org/10.1053/j.gastro.2015.08.052 CrossRefGoogle Scholar
  29. 29.
    de Voer RM, Hahn MM, Mensenkamp AR et al (2015) Deleterious germline BLM mutations and the risk for early-onset colorectal cancer. Sci Rep 5:14060.  https://doi.org/10.1038/srep14060 CrossRefGoogle Scholar
  30. 30.
    Ozgenc A, Loeb LA (2006) Werner syndrome, aging and cancer. Genome Dyn 1:206–217.  https://doi.org/10.1159/000092509 CrossRefGoogle Scholar
  31. 31.
    Wu X, Mondal G, Wang X et al (2009) Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res 69(13):5531–5536.  https://doi.org/10.1158/0008-5472.can-08-4834 CrossRefGoogle Scholar
  32. 32.
    Zhang B, Wang E, Dai H et al (2013) BRIT1 regulates p53 stability and functions as a tumor suppressor in breast cancer. Carcinogenesis 34(10):2271–2280.  https://doi.org/10.1093/carcin/bgt190 CrossRefGoogle Scholar
  33. 33.
    Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD (2010) Loss of DNA polymerase zeta enhances spontaneous tumorigenesis. Cancer Res 70(7):2770–2778.  https://doi.org/10.1158/0008-5472.can-09-4267 CrossRefGoogle Scholar
  34. 34.
    De Brakeleer S, De Greve J, Loris R et al (2010) Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum Mutat 31(3):E1175–E1185.  https://doi.org/10.1002/humu.21200 CrossRefGoogle Scholar
  35. 35.
    Ratajska M, Antoszewska E, Piskorz A et al (2012) Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res Treat 131(1):89–97.  https://doi.org/10.1007/s10549-011-1403-8 CrossRefGoogle Scholar
  36. 36.
    Norquist BM, Harrell MI, Brady MF et al (2016) Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2(4):482–490.  https://doi.org/10.1001/jamaoncol.2015.5495 CrossRefGoogle Scholar
  37. 37.
    Kawasaki T, Ohnishi M, Suemoto Y et al (2008) WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 21(2):150–158.  https://doi.org/10.1038/modpathol.3800996 CrossRefGoogle Scholar
  38. 38.
    Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654(2):105–122.  https://doi.org/10.1016/j.bbcan.2004.01.001 Google Scholar
  39. 39.
    Cabelof DC (2012) Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance. Cell Mol Life Sci 69(5):727–740.  https://doi.org/10.1007/s00018-011-0839-7 CrossRefGoogle Scholar
  40. 40.
    Gruber SB, Ellis NA, Scott KK et al (2002) BLM heterozygosity and the risk of colorectal cancer. Science 297(5589):2013CrossRefGoogle Scholar
  41. 41.
    Theodoratou E, Campbell H, Tenesa A et al (2010) A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer 103(12):1875–1884.  https://doi.org/10.1038/sj.bjc.6605966 CrossRefGoogle Scholar
  42. 42.
    Bouffler SD, Hofland N, Cox R, Fodde R (2000) Evidence for Msh2 haploinsufficiency in mice revealed by MNU-induced sister-chromatid exchange analysis. Br J Cancer 83(10):1291–1294.  https://doi.org/10.1054/bjoc.2000.1422 CrossRefGoogle Scholar
  43. 43.
    DeWeese TL, Shipman JM, Larrier NA et al (1998) Mouse embryonic stem cells carrying one or two defective Msh2 alleles respond abnormally to oxidative stress inflicted by low-level radiation. Proc Natl Acad Sci USA 95(20):11915–11920CrossRefGoogle Scholar
  44. 44.
    Rigter LS, Snaebjornsson P, Rosenberg EH et al (2018) Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin’s lymphoma treatment. Gut 67(3):447–455.  https://doi.org/10.1136/gutjnl-2016-312608 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rosa M. Xicola
    • 1
  • Julia R. Clark
    • 2
  • Timothy Carroll
    • 2
  • Jurgis Alvikas
    • 2
  • Priti Marwaha
    • 2
  • Maureen R. Regan
    • 2
  • Francesc Lopez-Giraldez
    • 3
  • Jungmin Choi
    • 4
  • Rajyasree Emmadi
    • 5
  • Victoria Alagiozian-Angelova
    • 6
  • Sonia S. Kupfer
    • 7
  • Nathan A. Ellis
    • 8
  • Xavier Llor
    • 1
    Email author
  1. 1.Department of Internal Medicine and Cancer CenterYale University School of MedicineNew HavenUSA
  2. 2.Department of Medicine and Cancer CenterUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Yale Center for Genome AnalysisYale UniversityOrangeUSA
  4. 4.Department of Genetics and Yale Center for Genome AnalysisYale University School of MedicineOrangeUSA
  5. 5.Department of PathologyUniversity of Illinois at ChicagoChicagoUSA
  6. 6.Department of PathologyJohn H Stroger Jr. HospitalChicagoUSA
  7. 7.Center for Clinical Cancer GeneticsThe University of ChicagoChicagoUSA
  8. 8.Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations