Advertisement

Familial Cancer

, Volume 17, Issue 4, pp 569–576 | Cite as

Molecular analysis of an asbestos-exposed Belgian family with a high prevalence of mesothelioma

  • Marieke Hylebos
  • Ken Op de Beeck
  • Jenneke van den Ende
  • Patrick Pauwels
  • Martin Lammens
  • Jan P. van MeerbeeckEmail author
  • Guy Van Camp
Original Article

Abstract

Familial clustering of malignant mesothelioma (MM) has been linked to the presence of germline mutations in BAP1. However, families with multiple MM patients, without segregating BAP1 mutation were described, suggesting the existence of other predisposing genetic factors. In this study, we report a previously undescribed Belgian family, in which BAP1 was found to be absent in the epithelial malignant mesothelial cells of the index patient. Whole exome analysis did not reveal a germline or somatic BAP1 variant. Also, no germline or somatic copy number changes in the BAP1 region could be identified. However, germline variants, predicted to be damaging, were detected in 11 other ‘Cancer census genes’ (i.e. MPL, RBM15, TET2, FAT1, HLA-A, EGFR, KMT2C, BRD3, NOTCH1, RB1 and MYO5A). Of these, the one in RBM15 seems to be the most interesting given its low minor allele frequency and absence in the germline DNA of the index patient’s mother. The importance of this ‘Cancer census gene’ in familial MM clustering needs to be evaluated further. Nevertheless, this study strengthens the suspicion that, next to germline BAP1 alterations, other genetic factors might predispose families to the development of MM.

Keywords

Malignant mesothelioma Familial cancer Cancer predisposition BAP1 Cancer census genes 

Notes

Acknowledgements

The human biological material of the index patient was provided by Biobank@UZA (Antwerp University Hospital, Belgium; ID: BE71030031000, funded by the Belgian National Cancer Plan). We also want to thank Sisca Kohl, nursing counselor at the Thoracic Oncology department of the Antwerp University Hospital, for helping with the collection of the peripheral blood samples of the family members.

Funding

This work was realized with an Emmanuel van der Schueren research grant from the Flemish League against Cancer and grant 2016/818 from the Belgian Foundation against Cancer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10689_2018_95_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 147 KB)

References

  1. 1.
    Rake C, Gilham C, Hatch J, Darnton A, Hodgson J, Peto J (2009) Occupational, domestic and environmental mesothelioma risks in the British population: a case-control study. Br J Cancer 100(7):1175–1183.  https://doi.org/10.1038/sj.bjc.6604879 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pass HI, Carbone M (2009) Current status of screening for malignant pleural mesothelioma. Semin Thorac Cardiovasc Surg 21(2):97–104.  https://doi.org/10.1053/j.semtcvs.2009.06.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, Cox NJ, Dogan AU, Pass HI, Trusa S, Hesdorffer M, Nasu M, Powers A, Rivera Z, Comertpay S, Tanji M, Gaudino G, Yang H, Carbone M (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43(10):1022–1025.  https://doi.org/10.1038/ng.912 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wiesner T, Fried I, Ulz P, Stacher E, Popper H, Murali R, Kutzner H, Lax S, Smolle-Juttner F, Geigl JB, Speicher MR (2012) Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol 30(32):e337–e340.  https://doi.org/10.1200/JCO.2011.41.2965 CrossRefPubMedGoogle Scholar
  5. 5.
    Cheung M, Talarchek J, Schindeler K, Saraiva E, Penney LS, Ludman M, Testa JR (2013) Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 206(5):206–210.  https://doi.org/10.1016/j.cancergen.2013.05.018 CrossRefPubMedGoogle Scholar
  6. 6.
    Betti M, Casalone E, Ferrante D, Romanelli A, Grosso F, Guarrera S, Righi L, Vatrano S, Pelosi G, Libener R, Mirabelli D, Boldorini R, Casadio C, Papotti M, Matullo G, Magnani C, Dianzani I (2015) Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. Genes Chromosomes Cancer 54(1):51–62.  https://doi.org/10.1002/gcc.22218 CrossRefPubMedGoogle Scholar
  7. 7.
    Ladanyi M, Zauderer MG, Krug LM, Ito T, McMillan R, Bott M, Giancotti F (2012) New strategies in pleural mesothelioma: BAP1 and NF2 as novel targets for therapeutic development and risk assessment. Clin Cancer Res 18(17):4485–4490.  https://doi.org/10.1158/1078-0432.CCR-11-2375 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, Windpassinger C, Wackernagel W, Loy S, Wolf I, Viale A, Lash AE, Pirun M, Socci ND, Rutten A, Palmedo G, Abramson D, Offit K, Ott A, Becker JC, Cerroni L, Kutzner H, Bastian BC, Speicher MR (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018–1021.  https://doi.org/10.1038/ng.910 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, Hovland P, Davidorf FH (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48(12):856–859.  https://doi.org/10.1136/jmedgenet-2011-100156 CrossRefPubMedGoogle Scholar
  10. 10.
    Njauw CN, Kim I, Piris A, Gabree M, Taylor M, Lane AM, DeAngelis MM, Gragoudas E, Duncan LM, Tsao H (2012) Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS ONE 7(4):e35295.  https://doi.org/10.1371/journal.pone.0035295 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wadt K, Choi J, Chung JY, Kiilgaard J, Heegaard S, Drzewiecki KT, Trent JM, Hewitt SM, Hayward NK, Gerdes AM, Brown KM (2012) A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 25(6):815–818.  https://doi.org/10.1111/pcmr.12006 CrossRefPubMedGoogle Scholar
  12. 12.
    Hoiom V, Edsgard D, Helgadottir H, Eriksson H, All-Ericsson C, Tuominen R, Ivanova I, Lundeberg J, Emanuelsson O, Hansson J (2013) Hereditary uveal melanoma: a report of a germline mutation in BAP1. Genes Chromosomes Cancer 52(4):378–384.  https://doi.org/10.1002/gcc.22035 CrossRefPubMedGoogle Scholar
  13. 13.
    Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d’Enghien C, Richaudeau B, Renaudin X, Sellers J, Nicolas A, Sastre-Garau X, Desjardins L, Gyapay G, Raynal V, Sinilnikova OM, Andrieu N, Manie E, de Pauw A, Gesta P, Bonadona V, Maugard CM, Penet C, Avril MF, Barillot E, Cabaret O, Delattre O, Richard S, Caron O, Benfodda M, Hu HH, Soufir N, Bressac-de Paillerets B, Stoppa-Lyonnet D, Stern MH (2013) Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 92(6):974–980.  https://doi.org/10.1016/j.ajhg.2013.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pilarski R, Cebulla CM, Massengill JB, Rai K, Rich T, Strong L, McGillivray B, Asrat MJ, Davidorf FH, Abdel-Rahman MH (2014) Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer 53(2):177–182.  https://doi.org/10.1002/gcc.22129 CrossRefPubMedGoogle Scholar
  15. 15.
    de la Fouchardiere A, Cabaret O, Savin L, Combemale P, Schvartz H, Penet C, Bonadona V, Soufir N, Bressac-de Paillerets B (2015) Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet 88(3):273–277.  https://doi.org/10.1111/cge.12472 CrossRefPubMedGoogle Scholar
  16. 16.
    Wadt KA, Aoude LG, Johansson P, Solinas A, Pritchard A, Crainic O, Andersen MT, Kiilgaard JF, Heegaard S, Sunde L, Federspiel B, Madore J, Thompson JF, McCarthy SW, Goodwin A, Tsao H, Jonsson G, Busam K, Gupta R, Trent JM, Gerdes AM, Brown KM, Scolyer RA, Hayward NK (2015) A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin Genet 88(3):267–272.  https://doi.org/10.1111/cge.12501 CrossRefPubMedGoogle Scholar
  17. 17.
    Cheung M, Kadariya Y, Talarchek J, Pei J, Ohar JA, Kayaleh OR, Testa JR (2015) Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction. Cancer Lett 369(2):261–265.  https://doi.org/10.1016/j.canlet.2015.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, Martin SE, Peng DH, Gruber SB (2016) A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet 209(3):75–81.  https://doi.org/10.1016/j.cancergen.2015.12.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Cheung M, Kadariya Y, Pei J, Talarchek J, Facciolo F, Visca P, Righi L, Cozzi I, Testa JR, Ascoli V (2015) An asbestos-exposed family with multiple cases of pleural malignant mesothelioma without inheritance of a predisposing BAP1 mutation. Cancer Genet 208(10):502–507.  https://doi.org/10.1016/j.cancergen.2015.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ascoli V, Cozzi I, Vatrano S, Izzo S, Giorcelli J, Romeo E, Carnovale-Scalzo C, Grillo LR, Facciolo F, Visca P, Papotti M, Righi L (2016) Mesothelioma families without inheritance of a BAP1 predisposing mutation. Cancer Genet 209(9):381–387.  https://doi.org/10.1016/j.cancergen.2016.07.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, Creaney J, Lake RA, Zakowski MF, Reva B, Sander C, Delsite R, Powell S, Zhou Q, Shen R, Olshen A, Rusch V, Ladanyi M (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43(7):668–672.  https://doi.org/10.1038/ng.855 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Prins JB, Williamson KA, Kamp MM, Van Hezik EJ, Van der Kwast TH, Hagemeijer A, Versnel MA (1998) The gene for the cyclin-dependent-kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int J Cancer 75(4):649–653CrossRefPubMedGoogle Scholar
  23. 23.
    Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, Minna JD (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55(6):1227–1231PubMedGoogle Scholar
  24. 24.
    Vandeweyer G, Van Laer L, Loeys B, Van den Bulcke T, Kooy RF (2014) VariantDB: a flexible annotation and filtering portal for next generation sequencing data. Genome Med 6(10):74.  https://doi.org/10.1186/s13073-014-0074-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183.  https://doi.org/10.1038/nrc1299 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362.  https://doi.org/10.1038/nmeth.2890 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249.  https://doi.org/10.1038/nmeth0410-248 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucl Acids Res 40 (Web Server issue):W452–W457.  https://doi.org/10.1093/nar/gks539 CrossRefGoogle Scholar
  29. 29.
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Giron CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P (2017) Ensembl 2018. Nucl Acids Res.  https://doi.org/10.1093/nar/gkx1098 CrossRefPubMedGoogle Scholar
  30. 30.
  31. 31.
    Hylebos M, Van Camp G, Vandeweyer G, Fransen E, Beyens M, Cornelissen R, Suls A, Pauwels P, van Meerbeeck JP, Op de Beeck K (2017) Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma. Oncotarget 8(69):113673–113686.  https://doi.org/10.18632/oncotarget.22817 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Exome Variant Server NHLBI GO Exome Sequencing Project (ESP). http://evs.gs.washington.edu/EVS/. Accessed Jan 2018
  33. 33.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291.  https://doi.org/10.1038/nature19057 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Betti M, Casalone E, Ferrante D, Aspesi A, Morleo G, Biasi A, Sculco M, Mancuso G, Guarrera S, Righi L, Grosso F, Libener R, Pavesi M, Mariani N, Casadio C, Boldorini R, Mirabelli D, Pasini B, Magnani C, Matullo G, Dianzani I (2017) Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett 405:38–45.  https://doi.org/10.1016/j.canlet.2017.06.028 CrossRefPubMedGoogle Scholar
  35. 35.
    Hassan R, Morrow B, Walsh T, Lee MK, Gao J, Mian I, Khan J, Raffeld M, Patel S, Xi L, Wei JS, Schrump D, Hesdorffer M, Zhang J, Calzone K, Padiernos E, Alewine C, Steinberg SM, Thomas A, King M-C (2018) Inherited predisposition to malignant mesothelioma (MM) due to mutations in DNA repair genes. [Abstract] ASCO June 1–5 2018, Chicago, USAGoogle Scholar
  36. 36.
    Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, Patel JD, Rose B, Nelakuditi V, Knight Johnson A, Helgeson M, Fischer D, Sulai N, Turaga K, Huo D, Segal J, Kadri S, Li Z, Kindler HL, Churpek JE (2018) Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. [Abstract] ASCO June 1–5 2018, Chicago, USAGoogle Scholar
  37. 37.
    Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, Baumann F, Zhang YA, Gazdar A, Kanodia S, Tiirikainen M, Flores E, Gaudino G, Becich MJ, Pass HI, Yang H, Carbone M (2015) High Incidence of Somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol 10(4):565–576.  https://doi.org/10.1097/JTO.0000000000000471 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hiriart E, Gruffat H, Buisson M, Mikaelian I, Keppler S, Meresse P, Mercher T, Bernard OA, Sergeant A, Manet E (2005) Interaction of the Epstein-Barr virus mRNA export factor EB2 with human Spen proteins SHARP, OTT1, and a novel member of the family, OTT3, links Spen proteins with splicing regulation and mRNA export. J Biol Chem 280(44):36935–36945.  https://doi.org/10.1074/jbc.M501725200 CrossRefPubMedGoogle Scholar
  39. 39.
    Raffel GD, Chu GC, Jesneck JL, Cullen DE, Bronson RT, Bernard OA, Gilliland DG (2009) Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen. Mol Cell Biol 29(2):333–341.  https://doi.org/10.1128/MCB.00370-08 CrossRefPubMedGoogle Scholar
  40. 40.
    Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, Bouman D, Li Y, Mehta PK, Nizetic D, Kaneko Y, Chan GC, Chan LC, Squire J, Scherer SW, Hitzler JK (2001) Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28(3):220–221.  https://doi.org/10.1038/90054 CrossRefPubMedGoogle Scholar
  41. 41.
    Mercher T, Coniat MB, Monni R, Mauchauffe M, Nguyen Khac F, Gressin L, Mugneret F, Leblanc T, Dastugue N, Berger R, Bernard OA (2001) Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci USA 98(10):5776–5779.  https://doi.org/10.1073/pnas.101001498 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Marieke Hylebos
    • 1
    • 2
  • Ken Op de Beeck
    • 1
    • 2
  • Jenneke van den Ende
    • 1
  • Patrick Pauwels
    • 2
    • 3
  • Martin Lammens
    • 2
    • 3
  • Jan P. van Meerbeeck
    • 2
    • 4
    Email author
  • Guy Van Camp
    • 1
    • 2
  1. 1.Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalAntwerpBelgium
  2. 2.Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
  3. 3.Laboratory of PathologyAntwerp University HospitalAntwerpBelgium
  4. 4.Department of Pulmonology/Thoracic OncologyAntwerp University HospitalAntwerpBelgium

Personalised recommendations