Advertisement

Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013–2018)

  • Mijke Visser
  • Nienke van der Stoep
  • Nelleke GruisEmail author
Review
  • 45 Downloads

Introduction

Over 200,000 melanoma cases are diagnosed each year worldwide, leading to 55,000 deaths [1], and in most countries the annual incidence of melanoma is still increasing. Once melanoma has metastasised, it rapidly becomes life-threatening [1], underlining the importance of earlier diagnosis and better prevention. Melanoma aetiology is complex and heterogeneous, and environmental/lifestyle, phenotypic and genetic susceptibility contribute to melanoma genesis in a multifactorial manner [2]. UV radiation is known to be a major environmental risk factor, with a direct mutagenic role in melanoma pathogenesis [2, 3]. Phenotypic risk factors include light pigmentation, tendency to sunburn, inability to tan, and a large number of melanocytic nevi [2, 4].

While 90% of all melanoma cases are sporadic, 10% occur in a familial setting, defined by at least two first-degree relatives affected with melanoma [5]. Genetic susceptibility can be explained by the inheritance of either low,...

Notes

Acknowledgements

MV was supported by a grant from the Dutch Cancer Society (Grant No. UL2012-5489).

References

  1. 1.
    Schadendorf D, van Akkooi ACJ, Berking C et al (2018) Melanoma. Lancet (London, England) 392(10151):971–984.  https://doi.org/10.1016/s0140-6736(18)31559-9 CrossRefGoogle Scholar
  2. 2.
    Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer (Oxford, England: 1990) 41(1):45–60.  https://doi.org/10.1016/j.ejca.2004.10.016 CrossRefGoogle Scholar
  3. 3.
    Hodis E, Watson IR, Kryukov GV et al (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263.  https://doi.org/10.1016/j.cell.2012.06.024 CrossRefGoogle Scholar
  4. 4.
    Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer (Oxford, England: 1990) 41(14):2040–2059.  https://doi.org/10.1016/j.ejca.2005.03.034 CrossRefGoogle Scholar
  5. 5.
    Leachman SA, Carucci J, Kohlmann W et al (2009) Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol 61(4):677.e1–677.e14  https://doi.org/10.1016/j.jaad.2009.03.016 CrossRefGoogle Scholar
  6. 6.
    Aoude LG, Wadt KA, Pritchard AL, Hayward NK (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigm Cell Melanoma Res 28(2):148–160.  https://doi.org/10.1111/pcmr.12333 CrossRefGoogle Scholar
  7. 7.
    Read J, Wadt KA, Hayward NK (2016) Melanoma genetics. J Med Genet 53(1):1–14.  https://doi.org/10.1136/jmedgenet-2015-103150 CrossRefGoogle Scholar
  8. 8.
    Kamb A, Gruis NA, Weaver-Feldhaus J et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157):436–440CrossRefGoogle Scholar
  9. 9.
    Zuo L, Weger J, Yang Q et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99.  https://doi.org/10.1038/ng0196-97 CrossRefGoogle Scholar
  10. 10.
    Puntervoll HE, Yang XR, Vetti HH et al (2013) Melanoma prone families with CDK4 germline mutation: phenotypic profile and associations with MC1R variants. J Med Genet 50(4):264–270  https://doi.org/10.1136/jmedgenet-2012-101455 CrossRefGoogle Scholar
  11. 11.
    Goldstein AM, Chan M, Harland M et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66(20):9818–9828.  https://doi.org/10.1158/0008-5472.Can-06-0494 CrossRefGoogle Scholar
  12. 12.
    de Snoo FA, Bishop DT, Bergman W et al (2008) Increased risk of cancer other than melanoma in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res 14(21):7151–7157.  https://doi.org/10.1158/1078-0432.Ccr-08-0403 CrossRefGoogle Scholar
  13. 13.
    Potjer TP, Kranenburg HE, Bergman W et al (2015) Prospective risk of cancer and the influence of tobacco use in carriers of the p16-Leiden germline variant. Eur J Hum Genet EJHG 23(5):711–714.  https://doi.org/10.1038/ejhg.2014.187 CrossRefGoogle Scholar
  14. 14.
    Wiesner T, Obenauf AC, Murali R et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018–1021.  https://doi.org/10.1038/ng.910 CrossRefGoogle Scholar
  15. 15.
    Aoude LG, Wadt K, Bojesen A et al (2013) A BAP1 mutation in a Danish family predisposes to uveal melanoma and other cancers. PLoS ONE 8(8):e72144.  https://doi.org/10.1371/journal.pone.0072144 CrossRefGoogle Scholar
  16. 16.
    Cheung M, Talarchek J, Schindeler K et al (2013) Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 206(5):206–210.  https://doi.org/10.1016/j.cancergen.2013.05.018 CrossRefGoogle Scholar
  17. 17.
    Lin M, Zhang L, Hildebrandt MAT, Huang M, Wu X, Ye Y (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946.  https://doi.org/10.18632/oncotarget.20465 Google Scholar
  18. 18.
    Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925.  https://doi.org/10.1038/ng.411 CrossRefGoogle Scholar
  19. 19.
    Yokoyama S, Woods SL, Boyle GM et al (2011) A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480(7375):99–103.  https://doi.org/10.1038/nature10630 CrossRefGoogle Scholar
  20. 20.
    Bertolotto C, Lesueur F, Giuliano S et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98.  https://doi.org/10.1038/nature10539 CrossRefGoogle Scholar
  21. 21.
    Barrett JH, Iles MM, Harland M et al (2011) Genome-wide association study identifies three new melanoma susceptibility loci. Nat Genet 43(11):1108–1113.  https://doi.org/10.1038/ng.959 CrossRefGoogle Scholar
  22. 22.
    Robles-Espinoza CD, Harland M, Ramsay AJ et al (2014) POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 46(5):478–481.  https://doi.org/10.1038/ng.2947 CrossRefGoogle Scholar
  23. 23.
    Aoude LG, Pritchard AL, Robles-Espinoza CD et al (2015) Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J Natl Cancer Inst 107(2):408.  https://doi.org/10.1093/jnci/dju408 CrossRefGoogle Scholar
  24. 24.
    Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961.  https://doi.org/10.1126/science.1230062 CrossRefGoogle Scholar
  25. 25.
    Aoude LG, Heitzer E, Johansson P et al (2015) POLE mutations in families predisposed to cutaneous melanoma. Fam Cancer 14(4):621–628.  https://doi.org/10.1007/s10689-015-9826-8 CrossRefGoogle Scholar
  26. 26.
    Teerlink CC, Huff C, Stevens J et al (2018) A nonsynonymous variant in the GOLM1 gene in cutaneous malignant melanoma. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djy058 Google Scholar
  27. 27.
    Robles-Espinoza CD, Velasco-Herrera Mdel C, Hayward NK, Adams DJ (2015) Telomere-regulating genes and the telomere interactome in familial cancers. Mol Cancer Res MCR 13(2):211–222.  https://doi.org/10.1158/1541-7786.Mcr-14-0305 CrossRefGoogle Scholar
  28. 28.
    de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110.  https://doi.org/10.1101/gad.1346005 CrossRefGoogle Scholar
  29. 29.
    Donizy P, Kaczorowski M, Biecek P, Halon A, Szkudlarek T, Matkowski R (2016) Golgi-related proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in cutaneous melanoma: patterns of expression and prognostic significance. Int J Mol Sci 17(10):1619.  https://doi.org/10.3390/ijms17101619 CrossRefGoogle Scholar
  30. 30.
    Law MH, Bishop DT, Lee JE et al (2015) Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat Genet 47(9):987–995.  https://doi.org/10.1038/ng.3373 CrossRefGoogle Scholar
  31. 31.
    Maurano MT, Humbert R, Rynes E et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195.  https://doi.org/10.1126/science.1222794 CrossRefGoogle Scholar
  32. 32.
    Oldridge DA, Wood AC, Weichert-Leahey N et al (2015) Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528(7582):418–421.  https://doi.org/10.1038/nature15540 CrossRefGoogle Scholar
  33. 33.
    Wright JB, Brown SJ, Cole MD (2010) Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 30(6):1411–1420.  https://doi.org/10.1128/mcb.01384-09 CrossRefGoogle Scholar
  34. 34.
    Hua JT, Ahmed M, Guo H et al (2018) Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell 174(3):564–575.  https://doi.org/10.1016/j.cell.2018.06.014 CrossRefGoogle Scholar
  35. 35.
    Vallarelli AF, Rachakonda PS, Andre J et al (2016) TERT promoter mutations in melanoma render TERT expression dependent on MAPK pathway activation. Oncotarget 7(33):53127–53136.  https://doi.org/10.18632/oncotarget.10634 CrossRefGoogle Scholar
  36. 36.
    Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, Puig S (2012) Genetic counseling in melanoma. Dermatol Ther 25(5):397–402.  https://doi.org/10.1111/j.1529-8019.2012.01499.x CrossRefGoogle Scholar
  37. 37.
    Swetter SM, Tsao H, Bichakjian CK et al (2018) Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol.  https://doi.org/10.1016/j.jaad.2018.08.055 Google Scholar
  38. 38.
    Potjer TP, Bollen S, Grimbergen A et al (2018) Multi-gene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int J Cancer.  https://doi.org/10.1002/ijc.31984 Google Scholar
  39. 39.
    Helgadottir H, Ghiorzo P, van Doorn R et al (2018) Efficacy of novel immunotherapy regimens in patients with metastatic melanoma with germline CDKN2A mutations. J Med Genet.  https://doi.org/10.1136/jmedgenet-2018-105610 Google Scholar
  40. 40.
    Frebourg T (2014) The challenge for the next generation of medical geneticists. Hum Mutat 35(8):909–911.  https://doi.org/10.1002/humu.22592 CrossRefGoogle Scholar
  41. 41.
    Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A (2017) Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 18(1):14.  https://doi.org/10.1186/s12863-017-0479-5 CrossRefGoogle Scholar
  42. 42.
    Cust AE, Drummond M, Kanetsky PA et al (2018) Assessing the incremental contribution of common genomic variants to melanoma risk prediction in two population-based studies. J Invest Dermatol 138(12):2617–2624.  https://doi.org/10.1016/j.jid.2018.05.023 CrossRefGoogle Scholar
  43. 43.
    Gu F, Chen TH, Pfeiffer RM et al (2018) Combining common genetic variants and non-genetic risk factors to predict risk of cutaneous melanoma. Hum Mol Genet 27(23):4145–4156.  https://doi.org/10.1093/hmg/ddy282 Google Scholar
  44. 44.
    Leachman SA, Lucero OM, Sampson JE et al (2017) Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev 36(1):77–90.  https://doi.org/10.1007/s10555-017-9661-5 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations