Familial Cancer

, Volume 17, Issue 3, pp 395–402 | Cite as

Universal determination of microsatellite instability using BAT26 as a single marker in an Argentine colorectal cancer cohort

  • María Laura GonzálezEmail author
  • Natalia Causada-Calo
  • Juan Pablo Santino
  • Mev Dominguez-Valentin
  • Fabiana Alejandra Ferro
  • Inés Sammartino
  • Pablo Germán Kalfayan
  • Maria Alicia Verzura
  • Tamara Alejandra Piñero
  • Andrea Romina Cajal
  • Walter Pavicic
  • Carlos Vaccaro
Original Article


Microsatellite instability (MSI) is a hallmark tool for Lynch syndrome (LS) screening and a prognostic marker for sporadic colorectal cancer (CRC). In regions with limited resources and scarce CRC molecular characterization as South America, the implementation of universal MSI screening is under debate for both its purposes. We sought to estimate the frequency of BAT26 in colorectal adenocarcinomas and to determine associated clinical and histological features. Consecutive patients from a CRC registry were included. BAT26 determination was performed in all cases; if instability was found, immunohistochemistry (IHC) and BRAF mutation analyses were done, as appropriate. Differences were assessed by chi-squared or Fisher’s exact test, or by T test or Mann–Whitney. Multiple logistic regression was used to identify factors independently associated with BAT26-unstable tumors. We included 155 patients; mean age was 65.6 (SD 14.4) and 56.1% were male. The frequency of BAT26-unstable tumors was 22% (95% CI 15.7–29.3). Factors independently associated with BAT26-unstable tumors were right colon localization (OR 3.4, 95% CI 1.3–8.7), histological MSI features (OR 5.1, 95% CI 1.9–13.6) and Amsterdam criteria (OR 23.2, 95% CI 1.9–286.7). IHC was altered in 85.3% BAT26-unstable tumors and 70.6% lacked MLH1 expression; 47.8% of these harbored BRAF V600E mutation. We provide evidence to link the frequency of BAT26 to an increased diagnostic yield (up to 1.4-folds) of suspected LS cases in comparison to the revised Bethesda guidelines alone. In regions with limited resources, clinical and histological features associated with BAT26-unstable status could be useful to direct MSI screening in sporadic CRCs and may help guide clinical care and future research.


Microsatellite instability BAT26 Colorectal cancer Lynch syndrome Universal screening 



The authors would like to thank all members of the ProCanHe group and patients from the CRC Registry.

Author contributions

MLG: concept and design, data interpretation, manuscript writing and scientific discussion. NCC: statistical analysis and data interpretation, manuscript writing. JPS: histopathological and IHQ analysis. MDV: contributed to manuscript writing and scientific discussion. FAF and IS: data collection. PGK and MAV: scientific discussion. TAP and ARC: BAT26 and BRAF V600E determination. CV: concept and design, manuscript revision and scientific discussion.

Compliance with ethical standards

Conflict of interest

María L. González and Carlos Vaccaro received a grant from the Instituto Nacional del Cáncer, Argentina. The remaining authors declare no conflict of interest.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386CrossRefPubMedGoogle Scholar
  2. 2.
    Gualdrini UA, Iummato LE (2011) Cáncer colorrectal en la Argentina Organización, cobertura y calidad de las acciones de prevención y control. Informe final de diciembre de 2011: diagnóstico de situación de la ArgentinaGoogle Scholar
  3. 3.
    Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2016) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691. doi: 10.1136/gutjnl-2015-310912 CrossRefPubMedGoogle Scholar
  4. 4.
    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R (2014) Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol 20(20):6055–6072CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sierra MS, Forman D (2016) Burden of colorectal cancer in Central and South America. Cancer Epidemiol 44(Suppl):S74–S81CrossRefPubMedGoogle Scholar
  6. 6.
    Woods MO, Younghusband HB, Parfrey PS, Gallinger S, McLaughlin J, Dicks E et al (2010) The genetic basis of colorectal cancer in a population-based incident cohort with a high rate of familial disease. Gut 59(10):1369–1377CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Markowitz SD, Bertagnolli MM (2009) Molecular basis of colorectal cancer. N Engl J Med 362(13):1245–1247Google Scholar
  8. 8.
    Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087.e3CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bupathi M, Wu C (2016) Biomarkers for immune therapy in colorectal cancer : mismatch-repair deficiency and others. J Gastrointest Oncol 7(6):713–720CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim JH, Kang GH (2014) Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol 20(15):4230–4243CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46(15):2788–2798CrossRefPubMedGoogle Scholar
  12. 12.
    Lynch H, Lynch P, Lanspa S (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76:1–18CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Patel SG, Ahnen DJ (2012) Familial colon cancer syndromes: an update of a rapidly evolving field. Curr Gastroenterol Rep 14(5):428–438CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vasen H, Möslein G, Alonso A, Aretz S, Bernstein I, Bertario L et al (2010) Recommendations to improve identification of hereditary and familial colorectal cancer in Europe. Fam Cancer Cancer 9(2):109–115CrossRefGoogle Scholar
  15. 15.
    Vasen HF, Blanco I, Aktan-Collan K, Gopie JP, Alonso A, Aretz S et al (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62(6):812–823CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM et al (1997) A National Cancer Institute Workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highligts and Bethesda guidelines. J Natl Cancer Inst 89(23):1758–1761CrossRefPubMedGoogle Scholar
  18. 18.
    Campanella NC, Berardinelli GN, Scapulatempo-Neto C, Viana D, Palmero EI, Pereira R et al (2014) Optimization of a pentaplex panel for MSI analysis without control DNA in a Brazilian population: correlation with ancestry markers. Eur J Hum Genet 22:875–880CrossRefPubMedGoogle Scholar
  19. 19.
    Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K et al (2002) Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123(6):1804–1811CrossRefPubMedGoogle Scholar
  20. 20.
    Hoang J-M, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R (1997) BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 57:300–303PubMedGoogle Scholar
  21. 21.
    Cravo M, Lage P, Albuquerque C, Chaves P, Claro I, Gomes T (1999) BAT26 identifies sporadic colorectal cancers with mutador phenotype: a correlative study with clinico-pathological features and mutations in mismatch repair genes. J Pathol 188:252–257CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou XP, Hoang JM, Li YJ, Seruca R, Carneiro F, Sobrinho-Simoes M et al (1998) Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosom Cancer 21(2):101–107CrossRefPubMedGoogle Scholar
  23. 23.
    Brennetot C, Buhard O, Jourdan F, Flejou JF, Duval A, Hamelin R (2005) Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumors and predict tumor content: Implications for population screening. Int J Cancer 113(3):446–450CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar S, Chang EY, Frankhouse J, Dorsey PB, Lee RG, Johnson N (2009) Combination of microsatellite instability and lymphocytic infiltrate as a prognostic indicator for adjuvant therapy in colon cancer. Arch Surg 144(9):835–840CrossRefPubMedGoogle Scholar
  25. 25.
    Seppälä TT, Böhm JP, Friman M, Lahtinen L, Väyrynen VMJ, Liipo TKE et al (2015) Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer 112(12):1966–1975CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Perez-Carbonell L, Ruiz-Ponte C, Guarinos C, Alenda C, Paya A, Brea A et al (2012) Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut 61(6):865–872CrossRefPubMedGoogle Scholar
  27. 27.
    Piñol V (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293(16):1986CrossRefPubMedGoogle Scholar
  28. 28.
    Julié C, Trésallet C, Brouquet A, Vallot C, Zimmermann U, Mitry E et al (2008) Identification in daily practice of patients with lynch syndrome (hereditary nonpolyposis colorectal cancer): revised Bethesda guidelines-based approach versus molecular screening. Am J Gastroenterol 103(11):2825–2835CrossRefPubMedGoogle Scholar
  29. 29.
    Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA et al (2012) Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308(15):1555–1565CrossRefPubMedGoogle Scholar
  30. 30.
    Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW et al (2014) Guidelines on genetic evaluation and management of lynch syndrome: a consensus statement by the us multi-society task force on colorectal cancer. Gastroenterology 147(2):502–526CrossRefPubMedGoogle Scholar
  31. 31.
    Erten MZ, Fernandez LP, Ng HK, McKinnon WC, Heald B, Koliba CJ et al (2016) Universal versus targeted screening for Lynch Syndrome: comparing ascertainment and costs based on clinical experience. Dig Dis Sci 61(10):1–9CrossRefGoogle Scholar
  32. 32.
    Carvalho F, Santos EMM, Pena SD, Lopes A, Ferreira FO, Junior SA et al (2005) Clinicopathological significance of BAT26 instability in 184 patients with colorectal cancer. Appl Cancer Res 25(1):36–40Google Scholar
  33. 33.
    Chao A, Gilliland F, Willman C, Joste N, Chen IM, Stone N et al (2000) Patient and tumor characteristics of colon cancers with microsatellite instability: a population-based study. Cancer Epidemiol Biomarkers Prev 9(6):539–544PubMedGoogle Scholar
  34. 34.
    Young J, Simms LA, Biden KG, Wynter C, Whitehall V, Karamatic R et al (2001) Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol 159(6):2107–2116CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ et al (2001) The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet 69:780–790CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Valentin MD, Da Silva FC, Dos Santos EMM, Lisboa BG, De Oliveira LP, De Oliveira Ferreira F et al (2011) Characterization of germline mutations of MLH1 and MSH2 in unrelated south American suspected Lynch syndrome individuals. Fam Cancer 10(4):641–647CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • María Laura González
    • 1
    • 2
    Email author
  • Natalia Causada-Calo
    • 1
    • 2
    • 3
  • Juan Pablo Santino
    • 1
    • 5
  • Mev Dominguez-Valentin
    • 4
  • Fabiana Alejandra Ferro
    • 1
  • Inés Sammartino
    • 1
  • Pablo Germán Kalfayan
    • 1
  • Maria Alicia Verzura
    • 1
  • Tamara Alejandra Piñero
    • 1
    • 7
  • Andrea Romina Cajal
    • 1
    • 7
  • Walter Pavicic
    • 1
  • Carlos Vaccaro
    • 1
    • 6
  1. 1.Programa de Cáncer Hereditario (ProCanHe), Hospital Italiano de Buenos AiresBuenos AiresArgentina
  2. 2.Gastroenterology DepartmentHospital Italiano de Buenos AiresBuenos AiresArgentina
  3. 3.Department of Medicine, Farncombe Family Digestive Research InstituteMcMaster UniversityHamiltonCanada
  4. 4.Department of Tumor Biology, Institute for Cancer ResearchThe Norwegian Radium HospitalOsloNorway
  5. 5.Pathology DepartmentHospital Italiano de Buenos AiresBuenos AiresArgentina
  6. 6.Surgery DepartmentHospital Italiano de Buenos AiresBuenos AiresArgentina
  7. 7.Instituto Universitario, Hospital Italiano de Buenos AiresBuenos AiresArgentina

Personalised recommendations