Familial Cancer

, Volume 17, Issue 1, pp 129–134 | Cite as

Association of genetic variations in RTN4 3′-UTR with risk for clear cell renal cell carcinoma

  • Yan Pu
  • Peng Chen
  • Bin Zhou
  • Peng Zhang
  • Yanyun Wang
  • Yaping Song
  • Lin ZhangEmail author
Original Article


Nogo proteins play an important role in the apoptosis of cells, especially in tumor cells. The present study was conducted to evaluate whether the TATC (rs71682980) and CAA (rs34917480) insertion/deletion polymorphisms of RTN4 3′-UTR are associated with clear cell renal cell carcinoma (ccRCC). These two polymorphisms were genotyped in 308 ccRCC patients and 466 healthy controls by polymerase chain reaction polyacrylamide gel electrophoresis (PCR-PAGE). Significantly reduced ccRCC risk was observed to be associated with the TATCins/ins genotype carriers (Versus TATCdel/del: adjusted OR 0.53, 95% CI 0.32–0.87, P = 0.022; Versus TATCdel/del−del/ins: adjusted OR 0.57, 95% CI 0.36–0.92, P = 0.017). After performing stratification analysis, the frequency of TATCins/ins genotype was observed to be significantly higher in patients with N0 compared the patients with N1 (P = 0.003). The present study provide evidence for the first time that the TATC insertion/deletion polymorphism in RTN4 3′-UTR may contributes to ccRCC risk in Chinese Han population.


RTN4 Nogo proteins Clear cell renal cell carcinoma Polymorphism Genetic susceptibility 



This work was supported by the National Natural Science Foundation of China (Nos. 81172440, 81172494, 81272821 and 81202023); the Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province (No. 2012SZ0026); and the Science Foundation for The Excellent Youth Scholars of Sichuan University (No. 2011SCU04A16).

Author contributions

Yan Pu is responsible for statistical design and analysis.

Compliance with ethical standards

Conflict of interest

No competing financial interests exist.


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249CrossRefPubMedGoogle Scholar
  2. 2.
    Chow WH, Dong LM, Devesa SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7:245–257CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yang L, Parkin DM, Ferlay J, Li L, Chen Y (2005) Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomark Prev 14:243–250CrossRefGoogle Scholar
  4. 4.
    Moch H (2013) An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol 23:3–9CrossRefPubMedGoogle Scholar
  5. 5.
    Decastro GJ, McKiernan JM (2008) Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin N Am 35:581–592CrossRefGoogle Scholar
  6. 6.
    Zhang S, Qian J, Cao Q, Li P, Wang M, Wang J, Ju X, Meng X, Lu Q, Shao P et al (2014) A potentially functional polymorphism in the promoter region of miR-34b/c is associated with renal cell cancer risk in a Chinese population. Mutagenesis 29:149–154CrossRefPubMedGoogle Scholar
  7. 7.
    Hirata H, Hinoda Y, Nakajima K, Kikuno N, Yamamura S, Kawakami K, Suehiro Y, Tabatabai ZL, Ishii N, Dahiya R (2009) Wnt antagonist gene polymorphisms and renal cancer. Cancer 115:4488–4503CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Basturk B, Yavascaoglu I, Vuruskan H, Goral G, Oktay B, Oral HB (2005) Cytokine gene polymorphisms as potential risk and protective factors in renal cell carcinoma. Cytokine 30:41–45CrossRefPubMedGoogle Scholar
  9. 9.
    Sutphin PD, Chan DA, Li JM, Turcotte S, Krieg AJ, Giaccia AJ (2007) Targeting the loss of the von Hippel-Lindau tumor suppressor gene in renal cell carcinoma cells. Cancer Res 67:5896–5905CrossRefPubMedGoogle Scholar
  10. 10.
    Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410CrossRefPubMedGoogle Scholar
  11. 11.
    Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, Duray P, Merino M, Choyke P, Pavlovich CP et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer cell 2:157–164CrossRefPubMedGoogle Scholar
  12. 12.
    Khoo SK, Giraud S, Kahnoski K, Chen J, Motorna O, Nickolov R, Binet O, Lambert D, Friedel J, Levy R et al (2002) Clinical and genetic studies of Birt-Hogg-Dube syndrome. J Med Genet 39:906–912CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Teng FY, Tang BL (2008) Cell autonomous function of Nogo and reticulons: the emerging story at the endoplasmic reticulum. J Cell Physiol 216:303–308CrossRefPubMedGoogle Scholar
  14. 14.
    Lu DY, Mao XH, Zhou YH, Yan XL, Wang WP, Zheng YB, Xiao JJ, Zhang P, Wang JG, Ashwani N et al (2014) RTN4 3′-UTR insertion/deletion polymorphism and susceptibility to non-small cell lung cancer in Chinese Han population. Asian Pac J Cancer Prev 15:5249–5252CrossRefPubMedGoogle Scholar
  15. 15.
    Oertle T, Huber C, van der Putten H, Schwab ME (2003) Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol 325:299–323CrossRefPubMedGoogle Scholar
  16. 16.
    Shi S, Zhou B, Wang Y, Chen Y, Zhang K, Wang K, Quan Y, Song Y, Rao L, Zhang L (2012) Genetic variation in RTN4 3′-UTR and susceptibility to cervical squamous cell carcinoma. DNA Cell Biol 31:1088–1094CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang K, Bai P, Shi S, Zhou B, Wang Y, Song Y, Rao L, Zhang L (2013) Association of genetic variations in RTN4 3′-UTR with risk of uterine leiomyomas. Pathol Oncol Res 19:475–479CrossRefPubMedGoogle Scholar
  18. 18.
    Novak G, Tallerico T (2006) Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3′-UTR. Brain Res 1120:161–171CrossRefPubMedGoogle Scholar
  19. 19.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929CrossRefPubMedGoogle Scholar
  20. 20.
    De Craene JO, Coleman J, Estrada de Martin P, Pypaert M, Anderson S, Yates JR 3rd, Ferro-Novick S, Novick P (2006) Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell 17:3009–3020CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Y, Vidensky S, Ruggiero AM, Maier S, Sitte HH, Rothstein JD (2008) Reticulon RTN2B regulates trafficking and function of neuronal glutamate transporter EAAC1. J Biol Chem 283:6561–6571CrossRefPubMedGoogle Scholar
  23. 23.
    Wakana Y, Koyama S, Nakajima K, Hatsuzawa K, Nagahama M, Tani K, Hauri HP, Melancon P, Tagaya M (2005) Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. Biochem Biophys Res Commun 334:1198–1205CrossRefPubMedGoogle Scholar
  24. 24.
    Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D, Tempst P, Strittmatter SM, Sessa WC (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10:382–388CrossRefPubMedGoogle Scholar
  25. 25.
    Oertle T, Schwab ME (2003) Nogo and its paRTNers. Trends Cell Biol 13:187–194CrossRefPubMedGoogle Scholar
  26. 26.
    Watari A, Yutsudo M (2003) Multi-functional gene ASY/Nogo/RTN-X/RTN4: apoptosis, tumor suppression, and inhibition of neuronal regeneration. Apoptosis 8:5–9CrossRefPubMedGoogle Scholar
  27. 27.
    GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439–444CrossRefPubMedGoogle Scholar
  28. 28.
    Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K, Mao M, Inaba T, Look AT (1999) SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 4:343–352CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong NX, Zhao HY, Zhang FC, He ZQ (2007) Negative correlation of Nogo-A with the malignancy of oligodendroglial tumor. Neurosci Bull 23:41–45CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xiao W, Zhou S, Xu H, Li H, He G, Liu Y, Qi Y (2013) Nogo-B promotes the epithelial-mesenchymal transition in HeLa cervical cancer cells via Fibulin-5. Oncol Rep 29:109–116CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Y, Tang X, Zhang X, Zhuang L (2009) New mutations of Nogo-C in hepatocellular carcinoma. Mol Biol Rep 36:377–380CrossRefPubMedGoogle Scholar
  32. 32.
    Marin EP, Moeckel G, Al-Lamki R, Bradley J, Yan Q, Wang T, Wright PL, Yu J, Sessa WC (2010) Identification and regulation of reticulon 4B (Nogo-B) in renal tubular epithelial cells. Am J Pathol 177:2765–2773CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen Y, Tang X, Cao X, Chen H, Zhang X (2006) Human Nogo-C overexpression induces HEK293 cell apoptosis via a mechanism that involves JNK-c-Jun pathway. Biochem Biophys Res Commun 348:923–928CrossRefPubMedGoogle Scholar
  34. 34.
    Shi D, Li P, Ma L, Zhong D, Chu H, Yan F, Lv Q, Qin C, Wang W, Wang M et al (2012) A genetic variant in pre-miR-27a is associated with a reduced renal cell cancer risk in a Chinese population. PLoS One 7:e46566CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li Q, Qi B, Oka K, Shimakage M, Yoshioka N, Inoue H, Hakura A, Kodama K, Stanbridge EJ, Yutsudo M (2001) Link of a new type of apoptosis-inducing gene ASY/Nogo-B to human cancer. Oncogene 20:3929–3936CrossRefPubMedGoogle Scholar
  36. 36.
    Shimakage M, Inoue N, Ohshima K, Kawahara K, Oka T, Yasui K, Matsumoto K, Inoue H, Watari A, Higashiyama S et al (2006) Down-regulation of ASY/Nogo transcription associated with progression of adult T-cell leukemia/lymphoma. Int J Cancer 119:1648–1653CrossRefPubMedGoogle Scholar
  37. 37.
    Pesole G, Liuni S, Grillo G, Licciulli F, Larizza A, Makalowski W, Saccone C (2000) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 28:193–196CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhou B, Rao L, Li Y, Gao L, Li C, Chen Y, Xue H, Liang W, Lv M, Song Y et al (2009) The association between dilated cardiomyopathy and RTN4 3′UTR insertion/deletion polymorphisms. Clin Chim Acta 400:21–24CrossRefPubMedGoogle Scholar
  39. 39.
    Chen Y, Zhou B, Li H, Peng Y, Wang Y, Rao L (2011) Analysis of RTN4 3′UTR insertion/deletion polymorphisms in ventricular septal defect in a Chinese Han population. DNA Cell Biol 30:323–327CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yan Pu
    • 1
  • Peng Chen
    • 2
  • Bin Zhou
    • 3
  • Peng Zhang
    • 4
  • Yanyun Wang
    • 3
  • Yaping Song
    • 3
  • Lin Zhang
    • 1
    • 3
    Email author
  1. 1.Department of Forensic Biology, West China School of Basic Sciences and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Forensic MedicineNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Laboratory of Molecular Translational Medicine, West China Institute of Women and Children’s Health, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University HospitalSichuan UniversityChengduPeople’s Republic of China
  4. 4.Department of Urology, West China HospitalSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations