Advertisement

Familial Cancer

, Volume 15, Issue 4, pp 553–562 | Cite as

Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies

  • Masakazu Kohda
  • Kensuke Kumamoto
  • Hidetaka Eguchi
  • Tomoko Hirata
  • Yuhki Tada
  • Kohji Tanakaya
  • Kiwamu Akagi
  • Seiichi Takenoshita
  • Takeo Iwama
  • Hideyuki IshidaEmail author
  • Yasushi OkazakiEmail author
Original Article

Abstract

Genetic testing for hereditary colorectal polyposis/cancers has become increasingly important. Therefore, the development of a timesaving diagnostic platform is indispensable for clinical practice. We designed and validated target enrichment sequencing for 20 genes implicated in familial gastrointestinal polyposis/cancers in 32 cases with previously confirmed mutations using the HaloPlex enrichment system and MiSeq. We demonstrated that HaloPlex captured the targeted regions with a high efficiency (99.66 % for covered target regions, and 99.998 % for breadth of coverage), and MiSeq achieved a high sequencing accuracy (98.6 % for the concordant rate with SNP arrays). Using this approach, we correctly identified 33/33 (100 %) confirmed alterations including SNV, small INDELs and large deletions, and insertions in APC, BMPR1A, EPCAM, MLH1, MSH2, MSH6, PMS2, and SKT11. Our approach yielded the sequences of 20 target genes in a single experiment, and correctly identified all previously known mutations. Our results indicate that our approach successfully detected a wide range of genetic variations in a short turnaround time and with a small sample size for the rapid screening of known causative gene mutations of inherited colon cancer, such as familial adenomatous polyposis, Lynch syndrome, Peutz–Jeghers syndrome, and Juvenile polyposis syndrome.

Keywords

Hereditary gastrointestinal polyposis Colorectal cancer Familial adenomatous polyposis Lynch syndrome Mismatch repair genes 

Notes

Funding

This study was supported in part by a grant-in-aid for the Support Project of the Strategic Research Center in Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan awarded to the Saitama Medical University Research Center for Genomic Medicine.

Compliance with ethical standards

Conflict of interest

None of the authors have conflict of interest.

Supplementary material

10689_2016_9872_MOESM1_ESM.pdf (412 kb)
Supplementary material 1 (PDF 411 kb)
10689_2016_9872_MOESM2_ESM.pdf (12 kb)
Supplementary material 2 (PDF 11 kb)
10689_2016_9872_MOESM3_ESM.xlsx (23 kb)
Supplementary material 3 (XLSX 22 kb)
10689_2016_9872_MOESM4_ESM.xlsx (26 kb)
Supplementary material 4 (XLSX 26 kb)

References

  1. 1.
    Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW, American College of Gastroenterology (2015) ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110:223–262. doi: 10.1038/ajg.2014.435 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oliveira C, Pinheiro H, Figueiredo J, Seruca R (2015) Familial gastric cancer: genetic susceptibility, pathology, and implications for management. The Lancet 16:e60–e70. doi: 10.1016/S1470-2045(14)71016-2 CrossRefPubMedGoogle Scholar
  3. 3.
    Palles C, Cazier J-B, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Guarino Almeida E, Salguero I, Sherborne A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S, CORGI Consortium, WGS500 Consortium, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylance R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJW, McVean G, Houlston RS, Tomlinson I (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Publ Group 45:136–144. doi: 10.1038/ng.2503 Google Scholar
  4. 4.
    Aretz S (2010) The differential diagnosis and surveillance of hereditary gastrointestinal polyposis syndromes. Deutsch Arzteblatt Int 107(10):163Google Scholar
  5. 5.
    Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, Gulden C, Kupfer SS, Swisher EM, Bennett RL, Novetsky AP, Jarvik GP, Olopade OI, Goodfellow PJ, King M-C, Tait JF, Walsh T (2012) ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 14:357–366. doi: 10.1016/j.jmoldx.2012.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yurgelun MB (2015) Next-zfor hereditary colorectal cancer risk assessment. J Clin Oncol 33:388–393. doi: 10.1200/JCO.2014.58.9895 CrossRefPubMedGoogle Scholar
  7. 7.
    Cragun D, Radford C, Dolinsky JS, Caldwell M, Chao E, Pal T (2014) Panel-based testing for inherited colorectal cancer: a descriptive study of clinical testing performed by a US laboratory. Clin Genet 86:510–520. doi: 10.1111/cge.12359 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yurgelun MB, Allen B, Kaldate RR, Bowles KR (2015) Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology 149(604–613):e620. doi: 10.1053/j.gastro.2015.05.006 Google Scholar
  9. 9.
    Gréen A, Gréen H, Rehnberg M, Svensson A, Gunnarsson C, Jonasson J (2015) Assessment of HaloPlex amplification for sequence capture and massively parallel sequencing of arrhythmogenic right ventricular cardiomyopathy-associated genes. J Mol Diagn 17:31–42. doi: 10.1016/j.jmoldx.2014.09.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Mertes F, Elsharawy A, Sauer S, van Helvoort JMLM, van der Zaag PJ, Franke A, Nilsson M, Lehrach H, Brookes AJ (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genom 10:33–386. doi: 10.1093/bfgp/elr033 CrossRefGoogle Scholar
  11. 11.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 (Oxford, England) CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324 (Oxford, England) CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 (Oxford, England) CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi: 10.1101/gr.107524.110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi: 10.1093/nar/gkq603 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Bonnen PE, de Bakker PIW, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Gonzaga-Jauregui C, Anttila V, Brodeur W, Daly MJ, Leslie S, Mcvean G, Moutsianas L, Nguyen H, Zhang Q, Ghori MJR, Mcginnis R, McLaren W, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58. doi: 10.1038/nature09298 CrossRefGoogle Scholar
  17. 17.
    Thompson BA, Spurdle AB, Plazzer J-P, Greenblatt MS, Akagi K, Al-Mulla F, Bapat B, Bernstein I, Capellá G, den Dunnen JT, du Sart D, Fabre A, Farrell MP, Farrington SM, Frayling IM, Frébourg T, Goldgar DE, Heinen CD, Holinski-Feder E, Kohonen-Corish M, Robinson KL, Leung SY, Martins A, Moller P, Morak M, Nystrom M, Peltomaki P, Pineda M, Qi M, Ramesar R, Rasmussen LJ, Royer-Pokora B, Scott RJ, Sijmons R, Tavtigian SV, Tops CM, Weber T, Wijnen J, Woods MO, Macrae F, Genuardi M (2013) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Publ Group 46:107–115. doi: 10.1038/ng.2854 Google Scholar
  18. 18.
    Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9. doi: 10.1007/s00439-013-1358-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi: 10.1093/bioinformatics/btq033 (Oxford, England) CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yin T, Cook D, Lawrence M (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol 13(8):R77CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, Rusch MC, Chen K, Harris CC, Ding L, Holmfeldt L, Payne-Turner D, Fan X, Wei L, Zhao D, Obenauer JC, Naeve C, Mardis ER, Wilson RK, Downing JR, Zhang J (2011) CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Meth 8:652–654. doi: 10.1038/nmeth.1628 CrossRefGoogle Scholar
  22. 22.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006. doi: 10.1101/gr.229102 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. doi: 10.1038/nbt.1754 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Salo-Mullen EE, Shia J, Brownell I, Allen P, Girotra M, Robson ME, Offit K, Guillem JG, Markowitz AJ, Stadler ZK (2014) Mosaic partial deletion of the PTEN gene in a patient with Cowden syndrome. Fam Cancer 13:459–467. doi: 10.1007/s10689-014-9709-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Guan Y, Hu H, Peng Y, Gong Y, Yi Y, Shao L, Liu T, Li G, Wang R, Dai P, Bignon Y-J, Xiao Z, Yang L, Mu F, Xiao L, Xie Z, Yan W, Xu N, Zhou D, Yi X (2014) Detection of inherited mutations for hereditary cancer using target enrichment and next generation sequencing. Fam Cancer. doi: 10.1007/s10689-014-9749-9 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Masakazu Kohda
    • 1
  • Kensuke Kumamoto
    • 2
    • 3
  • Hidetaka Eguchi
    • 1
  • Tomoko Hirata
    • 1
  • Yuhki Tada
    • 1
  • Kohji Tanakaya
    • 4
  • Kiwamu Akagi
    • 5
  • Seiichi Takenoshita
    • 3
  • Takeo Iwama
    • 2
  • Hideyuki Ishida
    • 2
    Email author
  • Yasushi Okazaki
    • 1
    Email author
  1. 1.Division of Translational Research, Research Center for Genomic MedicineSaitama Medical UniversityHidakaJapan
  2. 2.Department of Digestive Tract and General Surgery, Saitama Medical CenterSaitama Medical UniversityKamoda, Kawagoe CityJapan
  3. 3.Department of Organ Regulatory SurgeryFukushima Medical UniversityFukushimaJapan
  4. 4.Department of SurgeryIwakuni Clinical CenterYamaguchiJapan
  5. 5.Divisions of Molecular Diagnosis and Cancer PreventionSaitama Cancer CenterSaitamaJapan

Personalised recommendations