Familial Cancer

, Volume 12, Issue 2, pp 307–312 | Cite as

Towards a vaccine to prevent cancer in Lynch syndrome patients

Original Article


Germline mutations of DNA mismatch repair (MMR) genes predispose Lynch syndrome mutation carriers to the development of MMR-deficient tumors. MMR-deficient tumors show high-level microsatellite instability (MSI-H) and are typically characterized by a comparatively favorable prognosis and the absence of distant organ metastasis. Lynch syndrome-associated cancers are characterized by a pronounced local anti-tumoral immune response and usually display dense lymphocyte infiltration. This finding strongly suggested that the immune system may play an active role in the surveillance and biology of these cancers. The progression of MMR deficient cancers seems to be triggered by mutations in microsatellite sequences within gene-encoding regions. These mutations may cause shifts of the translational reading frame and thus give rise to the generation of potentially immunogenic frameshift peptides (FSP) at the carboxy terminal end of the respective gene products. FSP-specific immune responses are thought to represent one major mechanism by which the host’s adaptive immune system can recognize and potentially control Lynch syndrome-associated MSI-H cancers. Consequently, vaccination with FSP antigens represent a promising approach for treatment of Lynch syndrome-associated cancers, potentially also suitable for tumor prevention in so far tumor-free Lynch syndrome germ line mutation carriers. This review will summarize the molecular mechanisms contributing to the immunological phenotype of MSI-H cancers. In addition, clinical perspectives will be discussed, focusing on MSI-H cancer-associated FSP antigens as potential targets for immune therapy approaches.


Colorectal cancer Frameshift peptides Immune therapy Lynch syndrome Microsatellite instability 


  1. 1.
    Watson P, Lin KM, Rodriguez-Bigas MA et al (1998) Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members. Cancer 83:259–266PubMedCrossRefGoogle Scholar
  2. 2.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedCrossRefGoogle Scholar
  3. 3.
    Kim H, Jen J, Vogelstein B, Hamilton SR (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145:148–156PubMedGoogle Scholar
  4. 4.
    Risio M, Reato G, di Celle PF et al (1996) Microsatellite instability is associated with the histological features of the tumor in nonfamilial colorectal cancer. Cancer Res 56:5470–5474PubMedGoogle Scholar
  5. 5.
    Dolcetti R, Viel A, Doglioni C et al (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813PubMedCrossRefGoogle Scholar
  6. 6.
    Michael-Robinson JM, Biemer-Hüttmann A et al (2001) Tumour infiltrating lymphocytes and apoptosis are independent features in colorectal cancer stratified according to microsatellite instability status. Gut 48:360–366PubMedCrossRefGoogle Scholar
  7. 7.
    Shia J, Ellis NA, Paty PB et al (2003) Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer. Am J Surg Pathol 27:1407–1417PubMedCrossRefGoogle Scholar
  8. 8.
    Smyrk TC, Watson P, Kaul K et al (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91:2417–2422PubMedCrossRefGoogle Scholar
  9. 9.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  10. 10.
    Phillips SM, Banerjea A, Feakins R et al (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91:469–475PubMedCrossRefGoogle Scholar
  11. 11.
    Michel S, Benner A, Tariverdian M et al (2008) High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer 99:1867–1873PubMedCrossRefGoogle Scholar
  12. 12.
    Bauer K, Michel S, Reuschenbach M et al (2011) Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer. Fam Cancer 10:557–565PubMedCrossRefGoogle Scholar
  13. 13.
    Banerjea A, Ahmed S, Hands RE et al (2004) Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol Cancer 3:21PubMedCrossRefGoogle Scholar
  14. 14.
    Bernal M, García-Alcalde F, Concha A et al (2012) Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape. Cancer Immunol Immunother 61:803–816PubMedCrossRefGoogle Scholar
  15. 15.
    de Miranda NF, Goudkade D, Jordanova ES et al (2012) Infiltration of Lynch colorectal cancers by activated immune cells associates with early staging of the primary tumor and absence of lymph node metastases. Clin Cancer Res 18:1237–1245PubMedCrossRefGoogle Scholar
  16. 16.
    Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346PubMedCrossRefGoogle Scholar
  17. 17.
    Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45:71–75PubMedCrossRefGoogle Scholar
  18. 18.
    Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338PubMedCrossRefGoogle Scholar
  19. 19.
    Ionov Y, Yamamoto H, Krajewski S et al (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci U S A 97:10872–10877PubMedCrossRefGoogle Scholar
  20. 20.
    Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 7:93–102PubMedCrossRefGoogle Scholar
  21. 21.
    Woerner SM, Kloor M, von Knebel Doeberitz M et al (2006) Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomark 2:69–86PubMedGoogle Scholar
  22. 22.
    Townsend A, Ohlen C, Rogers M et al (1994) Source of unique tumour antigens. Nature 371:662PubMedCrossRefGoogle Scholar
  23. 23.
    Saeterdal I, Bjørheim J, Lislerud K et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A 98:13255–13260PubMedCrossRefGoogle Scholar
  24. 24.
    Linnebacher M, Gebert J, Rudy W et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93:6–11PubMedCrossRefGoogle Scholar
  25. 25.
    Ripberger E, Linnebacher M, Schwitalle Y et al (2003) Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol 23:415–423PubMedCrossRefGoogle Scholar
  26. 26.
    Schwitalle Y, Linnebacher M, Ripberger E et al (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14PubMedGoogle Scholar
  27. 27.
    Garbe Y, Maletzki C, Linnebacher M (2011) An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes. PLoS ONE 6:e26517PubMedCrossRefGoogle Scholar
  28. 28.
    Schwitalle Y, Kloor M, Eiermann S et al (2008) Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134:988–997PubMedCrossRefGoogle Scholar
  29. 29.
    Bauer K, Nelius N, Reuschenbach M et al (2012) T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunol Immunother 62:27–37Google Scholar
  30. 30.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257PubMedCrossRefGoogle Scholar
  31. 31.
    Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226PubMedCrossRefGoogle Scholar
  32. 32.
    Sinicrope FA, Foster NR, Thibodeau SN et al (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103:863–875PubMedCrossRefGoogle Scholar
  33. 33.
    Burn J, Gerdes AM, Macrae F et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378:2081–2087PubMedCrossRefGoogle Scholar
  34. 34.
    Czéh M, Loddenkemper C, Shalapour S et al (2010) The immune response to sporadic colorectal cancer in a novel mouse model. Oncogene 29:6591–6602PubMedCrossRefGoogle Scholar
  35. 35.
    Reuschenbach M, Kloor M, Morak M et al (2010) Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer 9:173–179PubMedCrossRefGoogle Scholar
  36. 36.
    Marsh L, Coletta PL, Hull MA et al (2012) Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+mice. Int J Oncol 40:243–250PubMedGoogle Scholar
  37. 37.
    Bicknell DC, Kaklamanis L, Hampson R et al (1996) Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr Biol 6:1695–1697PubMedCrossRefGoogle Scholar
  38. 38.
    Kloor M, Becker C, Benner A et al (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65:6418–6424PubMedCrossRefGoogle Scholar
  39. 39.
    Kloor M, Michel S, Buckowitz B et al (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121:454–458PubMedCrossRefGoogle Scholar
  40. 40.
    Dierssen JW, de Miranda NF, Ferrone S et al (2007) HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7:33PubMedCrossRefGoogle Scholar
  41. 41.
    Chang CC, Ferrone S (2007) Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 56:227–236PubMedCrossRefGoogle Scholar
  42. 42.
    Koelzer VH, Baker K, Kassahn D et al (2012) Prognostic impact of β-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol 65:996–1002Google Scholar
  43. 43.
    Tikidzhieva A, Benner A, Michel S et al (2012) Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer 106:1239–1245PubMedCrossRefGoogle Scholar
  44. 44.
    Huang WC, Wu D, Xie Z et al (2006) Beta2-Microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66:9108–9116PubMedCrossRefGoogle Scholar
  45. 45.
    Josson S, Nomura T, Lin JT et al (2011) b2-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71:2600–2610PubMedCrossRefGoogle Scholar
  46. 46.
    Ma D, Luyten GP, Luyder TM et al (1995) Relationship between natural killer cell susceptibility and metastasis of human uveal melanoma cells in a murine model. Invest Ophthalmol Vis Sci 36:435–441PubMedGoogle Scholar
  47. 47.
    Jager MJ, Hurks HM, Levitskaya J et al (2002) HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 63:444–451PubMedCrossRefGoogle Scholar
  48. 48.
    Bernal M, Ruiz-Cabello F, Concha A et al (2012) Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 61:1359–1371PubMedCrossRefGoogle Scholar
  49. 49.
    Michel S, Linnebacher M, Alcaniz J et al (2010) Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer 127:889–898PubMedGoogle Scholar
  50. 50.
    Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507PubMedCrossRefGoogle Scholar
  51. 51.
    Kloor M, Huth C, Voigt AY et al (2012) Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. Lancet Oncol 13:598–606PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Applied Tumor Biology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations