Familial Cancer

, Volume 10, Issue 3, pp 515–520 | Cite as

A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance—functional analysis reveals the pathogenic one

  • Jukka Kantelinen
  • Thomas v. O. Hansen
  • Minttu Kansikas
  • Lotte Nylandsted Krogh
  • Mari K. Korhonen
  • Saara Ollila
  • Minna Nyström
  • Anne-Marie Gerdes
  • Reetta KariolaEmail author


Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS family carrying VUS in both MSH2 (c.2768T>A, p.Val923Glu) and MSH6 (c.3563G>A, p.Ser1188Asn). Two colorectal cancer (CRC) patients were studied for mutations and identified as carriers of both variants. In spite of a relatively high mean age of cancer onset (59.5 years) in the family, many CRC patients and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence that instead of MSH2 p.Val923Glu the MSH6 p.Ser1188Asn variant is completely MMR-deficient, the present study confirms the previous findings, and suggests that MSH6 (c.3563G>A, p.Ser1188Asn) is the pathogenic mutation in the family. Moreover, our results strongly support the strategy to functionally assess all identified VUS before predictive gene testing and genetic counseling are offered to a family.


Functional analysis Lynch syndrome MSH2 MSH6 Variants of uncertain significance (VUS) 



Amsterdam criteria


Colorectal cancer


Epithelial cell adhesion molecule


Hereditary non-polyposis colorectal cancer




Lynch syndrome


Mismatch repair


Microsatellite instability


Nuclear extract


Total extract


Variants of uncertain significance


Wild type



We thank Mikko Frilander for providing the HeLa cell line and Merja Salmitie for the preparation of 5′IDL1. Friedrik Wikman at Molecular Diagnostics at Skejby Hospital and Henrik Okkels at Clinical Biochemistry at Aalborg Hospital are acknowledged for their contributions to the molecular genetics analyses. Claus Fenger at Pathologic Department at Odense University Hospital is acknowledged for performing the immunohistochemical analyses. This study was supported by grants: Sigrid Juselius Foundation; European Research Council (2008-AdG-232635); Finnish Cancer Organisations, The Biocentrum Helsinki Organisation; The Research Foundation of the University of Helsinki and Kuopio Naturalists’ Society.


  1. 1.
    Woods MO, Williams P, Careen A et al (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28:669–673PubMedCrossRefGoogle Scholar
  2. 2.
    Hendriks YM, Wagner A, Morreau H et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127:17–25PubMedCrossRefGoogle Scholar
  3. 3.
    Berends MJ, Wu Y, Sijmons RH et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37PubMedCrossRefGoogle Scholar
  4. 4.
    Wagner A, Hendriks Y, Meijers-Heijboer EJ et al (2001) Atypical HNPCC owing to MSH6 germline mutations: analysis of a large Dutch pedigree. J Med Genet 38:318–322PubMedCrossRefGoogle Scholar
  5. 5.
    Wu Y, Berends MJ, Mensink RG et al (1999) Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet 65:1291–1298PubMedCrossRefGoogle Scholar
  6. 6.
    Couch FJ, Rasmussen LJ, Hofstra R et al (2008) Assessment of functional effects of unclassified genetic variants. Hum Mutat 29:1314–1326PubMedCrossRefGoogle Scholar
  7. 7.
    Ollila S, Sarantaus L, Kariola R et al (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131:1408–1417PubMedCrossRefGoogle Scholar
  8. 8.
    Ollila S, Dermadi Bebek D, Jiricny J et al (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29:1355–1363PubMedCrossRefGoogle Scholar
  9. 9.
    Bisgaard ML, Jager AC, Myrhoj T et al (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype-genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27PubMedCrossRefGoogle Scholar
  10. 10.
    Kantelinen J, Kansikas M, Korhonen MK et al (2010) MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 102:1068–1073PubMedCrossRefGoogle Scholar
  11. 11.
    Kariola R, Hampel H, Frankel WL et al (2004) MSH6 missense mutations are often associated with no or low cancer susceptibility. Br J Cancer 91:1287–1292PubMedCrossRefGoogle Scholar
  12. 12.
    de Wind N, Dekker M, Claij N et al (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23:359–362PubMedCrossRefGoogle Scholar
  13. 13.
    Chang DK, Ricciardiello L, Goel A et al (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275:18424–18431PubMedCrossRefGoogle Scholar
  14. 14.
    Marra G, Iaccarino I, Lettieri T et al (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci USA 95:8568–8573PubMedCrossRefGoogle Scholar
  15. 15.
    Kariola R, Otway R, Lonnqvist KE et al (2003) Two mismatch repair gene mutations found in a colon cancer patient–which one is pathogenic? Hum Genet 112:105–109PubMedGoogle Scholar
  16. 16.
    Cannavo E, Marra G, Sabates-Bellver J et al (2005) Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 65:10759–10766PubMedCrossRefGoogle Scholar
  17. 17.
    Drummond JT, Genschel J, Wolf E et al (1997) DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci USA 94:10144–10149PubMedCrossRefGoogle Scholar
  18. 18.
    Warren JJ, Pohlhaus TJ, Changela A et al (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26:579–592PubMedCrossRefGoogle Scholar
  19. 19.
    Pinto C, Veiga I, Pinheiro M et al (2006) MSH6 germline mutations in early-onset colorectal cancer patients without family history of the disease. Br J Cancer 95:752–756PubMedCrossRefGoogle Scholar
  20. 20.
    Kloor M, Voigt AY, Schackert HK et al (2011) Analysis of EPCAM protein expression in diagnostics of Lynch syndrome. J Clin Oncol 29:223–227PubMedCrossRefGoogle Scholar
  21. 21.
    Kansikas M, Kariola R, Nyström M (2011) Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum Mutat 32:107–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jukka Kantelinen
    • 1
  • Thomas v. O. Hansen
    • 2
  • Minttu Kansikas
    • 1
  • Lotte Nylandsted Krogh
    • 4
  • Mari K. Korhonen
    • 1
  • Saara Ollila
    • 1
  • Minna Nyström
    • 1
  • Anne-Marie Gerdes
    • 3
  • Reetta Kariola
    • 1
    Email author
  1. 1.Department of Biosciences, GeneticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Clinical Biochemistry, Section of Genomic MedicineRigshospitalet and Copenhagen UniversityCopenhagenDenmark
  3. 3.Department of Clinical GeneticsRigshospital and Copenhagen UniversityCopenhagenDenmark
  4. 4.Department of Clinical GeneticsOdense University HospitalOdenseDenmark

Personalised recommendations