Familial Cancer

, Volume 9, Issue 4, pp 495–502 | Cite as

Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of PENN II model to previous study

  • Noralane M. Lindor
  • Kiley J. Johnson
  • Hayden Harvey
  • V. Shane Pankratz
  • Susan M. Domchek
  • Katherine Hunt
  • Marcia Wilson
  • M. Cathie Smith
  • Fergus Couch
Article

Abstract

A number of models have been developed to predict the probability that a person carries a detectable germline mutation in the BRCA1 or BRCA2 genes. Their relative performance in a clinical setting is variable. To compare the performance characteristics of a web-based BRCA1/BRCA2 gene mutation prediction model: the PENNII model (www.afcri.upenn.edu/itacc/penn2), with studies done previously at our institution using four other models including LAMBDA, BRCAPRO, modified PENNI (Couch) tables, and Myriad II tables collated by Myriad Genetics Laboratories. Proband and family cancer history data were analyzed from 285 probands from unique families (27 Ashkenazi Jewish; 277 female) seen for genetic risk assessment in a multispecialty tertiary care group practice. All probands had clinical testing for BR.CA1 and BRCA2 mutations conducted in the same single commercial laboratory. The performance for PENNII results were assessed by the area under the receiver operating characteristic curve (AUC) of sensitivity versus 1-specificity, as a measure of ranking. The AUCs of the PENNII model were higher for predicting BRCA1 than for BRCA2 (81 versus 72%). The overall AUC was 78.7%. PENN II model for BRCA1/2 prediction performed well in this population with higher AUC compared with our experience using four other models. The ease of use of the PENNII model is compatible with busy clinical practices.

Keywords

BRCA1 BRCA2 Breast cancer Risk prediction Ovarian cancer 

References

  1. 1.
    Antoniou AC, Durocher F, Smith P et al (2005) BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families. Breast Cancer Res 8(1):R3CrossRefPubMedGoogle Scholar
  2. 2.
    Evans DG, Shenton A, Woodward E et al (2008) Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a clinical cancer genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer 8:155CrossRefPubMedGoogle Scholar
  3. 3.
    Milne RL, Osorio A, Cajal TR et al (2008) The average cumulative risks of breast and ovarian cancer for carriers of mutations in BRCA1 and BRCA2 attending genetic counseling units in Spain. Clin Cancer Res 14(9):2861–2869CrossRefPubMedGoogle Scholar
  4. 4.
    Marroni F, Aretini P, D’Andrea E et al (2004) Penetrances of breast and ovarian cancer in a large series of families tested for BRCA1/2 mutations. Eur J Hum Genet 12(11):899–906CrossRefPubMedGoogle Scholar
  5. 5.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333CrossRefPubMedGoogle Scholar
  6. 6.
    Levy-Lahad E, Friedman E (2007) Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 96(1):11–15CrossRefPubMedGoogle Scholar
  7. 7.
    Narod SA, Offit K (2005) Prevention and management of hereditary breast cancer. J Clin Oncol 23(8):1656–1663CrossRefPubMedGoogle Scholar
  8. 8.
    Sogaard M, Kjaer SK, Gayther S (2006) Ovarian cancer and genetic susceptibility in relation to the BRCA1 and BRCA2 genes. Occurrence, clinical importance and intervention. Acta Obstet Gynecol Scand 85(1):93–105CrossRefPubMedGoogle Scholar
  9. 9.
    National Comprehensive Cancer Network (2008) NCCN clinical practice guidelines in oncology. Colorectal cancer screening. Available via www.nccn.org. Cited 15 Dec 2009
  10. 10.
    Lindor NM, McMaster ML, Lindor CJ et al (2008) Concise handbook of familial cancer susceptibility syndromes—second edition. J Natl Cancer Inst Monogr 38:1–93PubMedGoogle Scholar
  11. 11.
    Lindor NM, Lindor RA, Apicella C et al (2007) Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of LAMBDA, BRCAPRO, Myriad II, and modified Couch models. Fam Cancer 6(4):473–482CrossRefPubMedGoogle Scholar
  12. 12.
    Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New YorkGoogle Scholar
  13. 13.
    Research Development Core Team (2005) R: a language and environment for statistical computing. Available via http://www.R-project.org. Cited 27 Sept 2006
  14. 14.
    Antoniou AC, Hardy R, Walker L et al (2008) Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J Med Genet 45(7):425–431CrossRefPubMedGoogle Scholar
  15. 15.
    Wacholder S, Hartge P, Prentice R et al (2010) Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362(11):986–993CrossRefPubMedGoogle Scholar
  16. 16.
    Apicella C, Andrews L, Hodgson SV et al (2003) Log odds of carrying an Ancestral Mutation in BRCA1 or BRCA2 for a Defined personal and family history in an Ashkenazi Jewish woman (LAMBDA). Breast Cancer Res 5(6):R206–R216CrossRefPubMedGoogle Scholar
  17. 17.
    Frank TS, Deffenbaugh AM, Reid JE et al (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20(6):1480–1490CrossRefPubMedGoogle Scholar
  18. 18.
    Parmigiani G, Berry D, Aguilar O (1998) Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62(1):145–158CrossRefPubMedGoogle Scholar
  19. 19.
    Berry DA, Iversen ESJ, Gudbjartsson DF et al (2002) BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 20(11):2701–2712CrossRefPubMedGoogle Scholar
  20. 20.
    Couch FJ, DeShano ML, Blackwood MA et al (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med 336(20):1409–1415CrossRefPubMedGoogle Scholar
  21. 21.
    National Cancer Institute (2003) Surveillance, epidemiology, and end results SEER program stat database: incidence–SEER 9 regs public-use. Version 5, 2nd edn. National Cancer Institute, Bethesda, MDGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Noralane M. Lindor
    • 1
  • Kiley J. Johnson
    • 1
  • Hayden Harvey
    • 1
  • V. Shane Pankratz
    • 2
  • Susan M. Domchek
    • 3
  • Katherine Hunt
    • 4
  • Marcia Wilson
    • 1
  • M. Cathie Smith
    • 5
  • Fergus Couch
    • 6
  1. 1.The Department of Medical GeneticsMayo Clinic College of MedicineRochesterUSA
  2. 2.Biomedical Statistics and InformaticsMayo Clinic College of MedicineRochesterUSA
  3. 3.Perelman Center for Advanced MedicineAbramson Cancer CenterPhiladelphiaUSA
  4. 4.Department of Hematology/OncologyMayo Clinic ArizonaScottsdaleUSA
  5. 5.Cancer Clinical Studies UnitMayo ClinicJacksonvilleUSA
  6. 6.Department of Laboratory Medicine and PathologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations