Advertisement

Familial Cancer

, 8:563 | Cite as

The prevalence of germ-line TP53 mutations in women diagnosed with breast cancer before age 30

  • Ophira M. Ginsburg
  • Mohammad R. Akbari
  • Zeba Aziz
  • Robert Young
  • Henry Lynch
  • Parviz Ghadirian
  • Andre Robidoux
  • Julian Londono
  • Gonzalo Vasquez
  • Magda Gomes
  • Mauricio Magalhaes Costa
  • Constantine Dimitrakakis
  • Gustavo Gutierrez
  • Robert Pilarski
  • Robert Royer
  • Steven A. NarodEmail author
Article

Abstract

Germ-line mutations in the TP53 gene are rare, but predispose women to a range of cancer types, including early-onset breast cancer. Breast cancers in women from families with the Li-Fraumeni syndrome often occur before age 30. The prevalence of deleterious TP53 mutations in unselected women with early-onset breast cancer is not precisely known. If mutations were found to be sufficiently common, it might be prudent to offer genetic testing to affected women in this age group. We screened the entire TP53 gene in the germ-line DNA from 95 women of various ethnic groups who were diagnosed with breast cancer before age 30, and who had previously been found to be negative for BRCA1 and BRCA2 mutations. No TP53 mutation was found. This study does not support a policy that TP53 testing should be offered routinely to unselected women with early-onset breast cancer in the absence of a family history of cancer.

Keywords

Breast cancer p53 Li-Fraumeni Li-Fraumeni-like 

References

  1. 1.
    Narod SA, Foulkes WD (2004) BRCA1 and BRCA2; 1994 and beyond. Nat Rev Cancer 4:665–676CrossRefPubMedGoogle Scholar
  2. 2.
    Li FP, Fraumeni JF Jr (1969) Soft tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71:747–752PubMedGoogle Scholar
  3. 3.
    Li FP, Fraumeni JF Jr, Mulvihill JJ et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362PubMedGoogle Scholar
  4. 4.
    Garber JE, Goldstein AM, Kantor AF et al (1991) Follow up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res 51:6069–6097Google Scholar
  5. 5.
    Malkin D, Li FP, Strong LC et al (1990) Germline p53 mutations in a familial syndrome of breast cancer, sarcoma, and other neoplasms. Science 250:1233–1238CrossRefPubMedGoogle Scholar
  6. 6.
    Birch JM, Hartley AL, Tricker KJ et al (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 54:1298–1304PubMedGoogle Scholar
  7. 7.
    Salmon A, Amikam D, Sodha N, Davidson S, Basel-Vanagaite L, Eeles RA, Abeliovich D, Peretz T (2007) Rapid development of post-radiotherapy sarcoma and breast cancer in a patient with a novel germline ‘de-novo’ TP53 mutation. Clin Oncol (R Coll Radiol) 19(7):490–493Google Scholar
  8. 8.
    De Leon Matsuda ML, Liede A, Kwan E, Mapua CA, Cutiongco EM, Tan A, Borg A, Narod SA (2002) BRCA1 and BRCA2 mutations among breast cancer patients from the Philippines. Int J Cancer 98(4):596–603CrossRefPubMedGoogle Scholar
  9. 9.
    Liede A, Malik IA, Aziz Z, Rios Pd Pde L, Kwan E, Narod SA (2002) Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. Am J Hum Genet 71(3):595–606CrossRefPubMedGoogle Scholar
  10. 10.
    Gomes MC, Costa MM, Borojevic R, Monteiro AN, Vieira R, Koifman S, Koifman RJ, Li S, Royer R, Zhang S, Narod SA (2007) Prevalence of BRCA1 and BRCA2 mutations in breast cancer patients from Brazil. Breast Cancer Res Treat 103(3):349–353CrossRefPubMedGoogle Scholar
  11. 11.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, New Jersey, pp 365–386Google Scholar
  12. 12.
    Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4(3):311–323CrossRefPubMedGoogle Scholar
  13. 13.
    Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15(16):2490–2508CrossRefPubMedGoogle Scholar
  14. 14.
    Manoukian S, Peissel B, Pensotti V et al (2007) Germline mutations of TP53 and BRCA2 genes in breast cancer/sarcoma families. Eur J Cancer 43(3):601–606CrossRefPubMedGoogle Scholar
  15. 15.
    Krasteva ME, Georgieva EI (2006) Germline p53 single-base changes associated with Balkan endemic nephropathy. Biochem Biophys Res Commun 342(2):562–567CrossRefPubMedGoogle Scholar
  16. 16.
    Keller G, Vogelsang H, Becker I et al (2004) Germline mutations of the E-cadherin (CDH1) and TP53 genes, rather than of RUNX3 and HPP1, contribute to genetic predisposition in German gastric cancer patients. J Med Genet 41(6):e89CrossRefPubMedGoogle Scholar
  17. 17.
    Dearth LR, Qian H, Wang T et al (2007) Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28(2):289–298CrossRefPubMedGoogle Scholar
  18. 18.
    Shiraishi K, Kato S, Han SY et al (2004) Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279(1):348–355CrossRefPubMedGoogle Scholar
  19. 19.
    Resnick MA, Inga A (2003) Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA 100(17):9934–9939CrossRefPubMedGoogle Scholar
  20. 20.
    Monti P, Campomenosi P, Ciribilli Y et al (2003) Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene 22(34):5252–5260CrossRefPubMedGoogle Scholar
  21. 21.
    Maurici D, Monti P, Campomenosi P et al (2001) Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene 20(27):3533–3540CrossRefPubMedGoogle Scholar
  22. 22.
    Smith PD, Crossland S, Parker G et al (1999) Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 18(15):2451–2459CrossRefPubMedGoogle Scholar
  23. 23.
    Flaman JM, Robert V, Lenglet S et al (1998) Identification of human p53 mutations with differential effects on the bax and p21 promoters using functional assays in yeast. Oncogene 16(10):1369–1372CrossRefPubMedGoogle Scholar
  24. 24.
    Tinat J, Bougeard G, Baert-Desurmont et al (2009) 2009 version of the Chompret criteria for Li-Fraumeni syndrome. J Clin Oncol (Epub August)Google Scholar
  25. 25.
    Borresen A-L, Andersen TI, Garber J et al (1992) Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 52:3234–3236PubMedGoogle Scholar
  26. 26.
    Eeles RA (1995) Germline mutations in the TP53 gene. Cancer Surv 25:10–24Google Scholar
  27. 27.
    Laloo F, Varley J, Moran A et al (2006) BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 42:1143–1150CrossRefGoogle Scholar
  28. 28.
    Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fung CY, Nguyen Q, Han JH et al (2009) Beyond Li-Fraumeni syndrome, clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256CrossRefPubMedGoogle Scholar
  29. 29.
    Bougeard G, Sesboue R, Baert-Desurmont S et al (2008) Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet 45(8):535–538CrossRefPubMedGoogle Scholar
  30. 30.
    Evans DG, Wu CL, Birch JM (2008) BRCA2: a cause of the Li-Fraumeni like syndrome. J Med Genet 45:62–63CrossRefPubMedGoogle Scholar
  31. 31.
    Walsh T, Casadei S, Coats KH et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2 and TP53 in families at high risk of breast cancer. JAMA 295(12):1379–1388CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ophira M. Ginsburg
    • 1
    • 2
  • Mohammad R. Akbari
    • 2
  • Zeba Aziz
    • 3
  • Robert Young
    • 4
  • Henry Lynch
    • 5
  • Parviz Ghadirian
    • 6
  • Andre Robidoux
    • 7
  • Julian Londono
    • 8
  • Gonzalo Vasquez
    • 8
  • Magda Gomes
    • 9
    • 10
  • Mauricio Magalhaes Costa
    • 11
  • Constantine Dimitrakakis
    • 12
  • Gustavo Gutierrez
    • 13
  • Robert Pilarski
    • 14
  • Robert Royer
    • 2
  • Steven A. Narod
    • 2
    Email author
  1. 1.Department of Medicine, Division of Medical OncologyUniversity of TorontoTorontoCanada
  2. 2.Women’s College Research InstituteUniversity of TorontoTorontoCanada
  3. 3.Department of Medical OncologyAllama Iqbal Medical CollegeLahorePakistan
  4. 4.Department of Obstetrics and GynecologyUniversity of South Carolina School of MedicineColumbiaUSA
  5. 5.Department of Preventive Medicine and Public HealthCreighton University School of MedicineOmahaUSA
  6. 6.Epidemiology Research Unit, Research CentreCentre hospitalier de l’Universite de Montreal (CHUM)-Hotel-DieuMontrealCanada
  7. 7.Department of SurgeryHotel-Dieu de Montreal, Universite de MontrealMontrealCanada
  8. 8.Department of Genetics, Faculty of MedicineUniversity of AntioquiaMedellinColombia
  9. 9.Department of OncologyClementino Fraga Filho University Hospital, Federal University of Rio de JaneiroRio de JaneiroBrazil
  10. 10.Antonio Pedro University Hospital, Fluminense Federal UniversityRio de JaneiroBrazil
  11. 11.Department of Obstetrics and GynecologyClementino Fraga Filho University Hospital, Federal University of Rio de JaneiroRio de JaneiroBrazil
  12. 12.Department of Gynecology and ObstetricsAlexandra Hospital, Athens Medical SchoolAthensGreece
  13. 13.School of BiologyUniversity of Costa RicaSan JoseCosta Rica
  14. 14.Clinical Cancer Genetics ProgramOhio State UniversityColumbusUSA

Personalised recommendations