Advertisement

Familial Cancer

, Volume 8, Issue 1, pp 75–83 | Cite as

Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population

  • Mef Nilbert
  • Friedrik P. Wikman
  • Thomas V. O. Hansen
  • Henrik B. Krarup
  • Torben F. Örntoft
  • Finn C. Nielsen
  • Lone Sunde
  • Anne-Marie Gerdes
  • Dorthe Cruger
  • Susanne Timshel
  • Marie-Louise Bisgaard
  • Inge Bernstein
  • Henrik Okkels
Article

Abstract

An increasing number of mismatch-repair (MMR) gene mutations have been identified in hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. This study presents the population-based Danish MMR gene mutation profile, which contains 138 different MMR gene alterations. Among these, 88 mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics and suggests that directed analysis of recurrent/founder mutations may be feasible e.g. in families were diagnostic material is restricted to archival tissue.

Keywords

MLH1 MSH2 MSH6 Hereditary nonpolyposis colorectal cancer HNPCC 

Notes

Acknowledgements

Financial support was granted from the Danish Cancer Society and from the Hvidovre University Hospital. We would also like to acknowledge surgeons, pathologists, and geneticists for identifying these families and reporting data to the national HNPCC-register.

References

  1. 1.
    Bronner CF, Baker SM, Morrison PT et al (1994) Mutations in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colorectal cancer. Nature 368:258–261. doi: 10.1038/368258a0 PubMedCrossRefGoogle Scholar
  2. 2.
    Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homologue MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038. doi: 10.1016/0092-8674(93)90546-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225. doi: 10.1016/0092-8674(93)90330-S PubMedCrossRefGoogle Scholar
  4. 4.
    Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629. doi: 10.1126/science.8128251 PubMedCrossRefGoogle Scholar
  5. 5.
    Woods MO, Williams P, Careen A et al (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28:669–673. doi: 10.1002/humu.20502 PubMedCrossRefGoogle Scholar
  6. 6.
    Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition – update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20:269–276PubMedGoogle Scholar
  7. 7.
    Vasen HF, Watson P, Mecklin J-P, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456. doi: 10.1016/S0016-5085(99)70510-X PubMedCrossRefGoogle Scholar
  8. 8.
    Bisgaard ML, Jäger AC, Myrhoj T, Bernstein I, Nielsen FC (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype–genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27. doi: 10.1002/humu.10083 PubMedCrossRefGoogle Scholar
  9. 9.
    Katballe N, Christensen M, Wikman FP, Orntoft TF, Laurberg S (2002) Frequency of hereditary non-polyposis colorectal cancer in Danish colorectal cancer patients. Gut 50:43–51. doi: 10.1136/gut.50.1.43 PubMedCrossRefGoogle Scholar
  10. 10.
    Roncari B, Pedroni M, Maffel S et al (2007) Frequency of constitutional MSH6 mutations in a consecutive series of families with clinical suspicion of HNPCC. Clin Genet 72:230–237. doi: 10.1111/j.1399-0004.2007.00856.x PubMedCrossRefGoogle Scholar
  11. 11.
    Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell RJ, Farrington SM, Dunlop MG, Campbell H (2002) Mismatch repair genes hMLH1 and hMSH2 in colorectal cancer: a HuGE review. Am J Epidemiol 15:865–902Google Scholar
  13. 13.
    Wijnen J, Meera Khan P, Vasen H et al (1996) Majority of hMLH1 mutations responsible for hereditary nonpolyposis colorectal cancer cluster at the exonic region 15–16. Am J Hum Genet 58:3000–3007Google Scholar
  14. 14.
    Baudhuin LM, Ferber MJ, Winters JL et al (2005) Characterization of hMLH1 and hMSH2 gene dosage alterations in Lynch syndrome patients. Gastroenterology 129:846–854. doi: 10.1053/j.gastro.2005.06.026 PubMedCrossRefGoogle Scholar
  15. 15.
    Grabrovski M, Mueller-Koch Y, Grasbon-Frodl E et al (2005) Deletions account for 17% of the pathogenetic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test 9:138–146. doi: 10.1089/gte.2005.9.138 CrossRefGoogle Scholar
  16. 16.
    Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR (2003) Genomic deletions in MSH2 or MLH1 are frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat 22:428–433. doi: 10.1002/humu.10291 PubMedCrossRefGoogle Scholar
  17. 17.
    Foulkes WD, Thiffault I, Gruber SB et al (2002) The founder mutation MSH2*1906G>C is an important cause of hereditary nonpolyposis colorectal cancer in Askenazi jewish population. Am J Hum Genet 71:1395–1412. doi: 10.1086/345075 PubMedCrossRefGoogle Scholar
  18. 18.
    Jäger AC, Rasmussen M, Bisgaard HC et al (2001) HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLa and hMLH1-hEXO1 complexes. Oncogene 20:3590–3595. doi: 10.1038/sj.onc.1204467 PubMedCrossRefGoogle Scholar
  19. 19.
    Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63:3302–3308PubMedGoogle Scholar
  20. 20.
    Ollila S, Sarantaus L, Kariola R et al (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131:1408–1417. doi: 10.1053/j.gastro.2006.08.044 PubMedCrossRefGoogle Scholar
  21. 21.
    Takahashi M, Shimodaira H, Andreutti-Zaugg C et al (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67:4595–4604. doi: 10.1158/0008-5472.CAN-06-3509 PubMedCrossRefGoogle Scholar
  22. 22.
    Raevaara TE, Gerdes A-M, Lönnqvist KE et al (2004) HNPCC mutation MLH1 P648S makes the functional protein unstable, and homozygosity predisposes to mild neurofibromatosis. Genes Chromosomes Cancer 40:261–265. doi: 10.1002/gcc.20040 PubMedCrossRefGoogle Scholar
  23. 23.
    Desai DC, Lockman JC, Chadwick RB et al (2000) Recurrent germline mutation in MSH2 arises frequently de novo. J Med Genet 37:646–652. doi: 10.1136/jmg.37.9.646 PubMedCrossRefGoogle Scholar
  24. 24.
    Froggatt NJ, Geen J, Bassett C et al (1999) A common MSH2 mutation in English and North American HNPCC families: origin, phenotypic expression, and sex specific differences in colorectal cancer. J Med Genet 36:97–102PubMedGoogle Scholar
  25. 25.
    Mangold E, Pagenstecher C, Friedl W et al (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116:692–702. doi: 10.1002/ijc.20863 PubMedCrossRefGoogle Scholar
  26. 26.
    Miyaki M, Konishi M, Muraoka M et al (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73:515–520. doi: 10.1007/BF00198903 PubMedCrossRefGoogle Scholar
  27. 27.
    Wagner A, Barrows A, Wijnen JT et al (2003) Molecular analysis of hereditary non-polyposis colorectal cancer in the United States: High mutation detection rates among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 72:1088–1100. doi: 10.1086/373963 PubMedCrossRefGoogle Scholar
  28. 28.
    Nystrom-Lathi M, Kristo P, Nicolaides NC et al (1995) Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med 1:1203–1206. doi: 10.1038/nm1195-1203 CrossRefGoogle Scholar
  29. 29.
    Sun S, Greenwood CM, Thuffault I et al (2005) The HNPCC associated MSH2*1906G-C founder mutation probably originated between 1440 and 1715 in the Ashkenazi Jewish population. J Med Genet 42:766–768. doi: 10.1136/jmg.2005.030999 PubMedCrossRefGoogle Scholar
  30. 30.
    Jäger AC, Bisgaard ML, Myrhöy T et al (1997) Reduced frequency of extracolonic cancers in hereditary nonpolyposis colorectal cancer families with monoallelic hMLH1 expression. Am J Hum Genet 61:129–138. doi: 10.1086/513896 PubMedCrossRefGoogle Scholar
  31. 31.
    Malander S, Rambech E, Kristoffersson U et al (2006) The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer. Gynecol Oncol 101:238–243. doi: 10.1016/j.ygyno.2005.10.029 PubMedCrossRefGoogle Scholar
  32. 32.
    Lagerstedt RK, Liu T, Vandrovcova J et al (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99:291–299. doi: 10.1093/jnci/djk051 PubMedCrossRefGoogle Scholar
  33. 33.
    Hendriks YM, Wagner A, Morreau H et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127:17–25. doi: 10.1053/j.gastro.2004.03.068 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mef Nilbert
    • 1
  • Friedrik P. Wikman
    • 2
  • Thomas V. O. Hansen
    • 3
  • Henrik B. Krarup
    • 4
  • Torben F. Örntoft
    • 2
  • Finn C. Nielsen
    • 3
  • Lone Sunde
    • 5
  • Anne-Marie Gerdes
    • 6
  • Dorthe Cruger
    • 7
  • Susanne Timshel
    • 8
  • Marie-Louise Bisgaard
    • 9
  • Inge Bernstein
    • 8
  • Henrik Okkels
    • 4
  1. 1.Clinical Research Centre and HNPCC-RegisterCopenhagen University, Hvidovre University HospitalHvidovreDenmark
  2. 2.Department of Clinical BiochemistryAarhus University HospitalAarhusDenmark
  3. 3.Department of Clinical BiochemistryRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
  4. 4.Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
  5. 5.Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
  6. 6.Department of Clinical GeneticsOdense University HospitalOdenseDenmark
  7. 7.Department of Clinical GeneticsVejle HospitalVejleDenmark
  8. 8.HNPCC-RegisterHvidovre University HospitalHvidovreDenmark
  9. 9.Department of Cellular and Molecular Medicine, Panum InstituteCopenhagen UniversityCopenhagenDenmark

Personalised recommendations