Familial Cancer

, Volume 7, Issue 1, pp 103–112 | Cite as

Pancreatic cancer and the FAMMM syndrome

  • Henry T. Lynch
  • Ramon M. Fusaro
  • Jane F. Lynch
  • Randall Brand


Hereditary cancer syndromes provide excellent models for molecular genetic studies that may aid significantly in case detection, surveillance, and management. Ultimately, molecularly based designer pharmaceuticals may emerge from this research, such as the case of trastuzumab (Herceptin) in HER-2/neu positive breast cancer, and imatinib (Gleevec) in chronic myelocytic leukemia and gastrointestinal stromal tumors. Importantly, these molecular findings may fuel significant clues to cancer control. This background is mentioned since surveillance and management of pancreatic cancer, a major concern of this manuscript, has been uniformly unsuccessful as evidenced by the close correspondence between its incidence and its mortality. Yet knowledge about its genetic and molecular pathology will hopefully ameliorate this vexing problem. One molecular genetic clue is the recently identified palladin mutation in two pancreatic cancer prone families. However, caution must be used toward the palladin mutation, as several recent publications have questioned its significance as a pancreatic cancer causing mutation. We provide a concise description of pancreatic cancer in concert with malignant melanoma in the familial atypical multiple mole melanoma (FAMMM) syndrome as a potential preventive model. This knowledge should help clinicians and basic scientists seize on the opportunity to develop more sensitive and specific screening and management programs in this disease; while a relatively small subset of pancreatic cancer may be readily identifiable through its FAMMM phenotype, coupled with its CDKN2A mutation, this hereditary disorder, given a keen knowledge of its natural history and molecular genetics, may prove to be an effective clinical preventive model.


Pancreatic cancer Hereditary cancer Malignant melanoma Familial atypical multiple mole melanoma syndrome CDKN2A mutation 



This article was supported by revenue from Nebraska cigarette taxes awarded to Creighton University by the Nebraska Department of Health and Human Services. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the State of Nebraska or the Nebraska Department of Health and Human Services. Support was also given by the Jacqueline Seroussi Memorial Foundation for Cancer Research, and by the National Institutes of Health through grant #1U01 CA 86389. Dr. Henry Lynch’s work is partially funded through the Charles F. and Mary C. Heider Chair in Cancer Research, which he holds at Creighton University.


  1. 1.
    Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130PubMedCrossRefGoogle Scholar
  2. 2.
    International Agency for Research on Cancer (2002) Globocan 2002. Available at: Cited 16 Oct 2006
  3. 3.
    Lynch HT, Shaw TG, Lynch JF (2004) Inherited predisposition to cancer: a historical overview. Am J Med Genet 129C:5–22CrossRefPubMedGoogle Scholar
  4. 4.
    Paré A (1585) Les oeuvres d’Ambroise Paré, Conseiller et premier Chirurgien du Roy. Divisées en vingt huigt livres. Avec les figures et portraicts, tant de l’Anatomie, que des instruments de Chirurgie, et des plusiers Monstres. chez Gabriel Buon, ParisGoogle Scholar
  5. 5.
    Aldrovandi U (1642) Monstrorum Historia cum Paralipomenis Historiae Omnium Animalium. Typis Nicolai Tibaldini, BononaiaeGoogle Scholar
  6. 6.
    Leclerc de Busson GL (1749) Histoire naturelle générale et particuliére. Imprint Royale, ParisGoogle Scholar
  7. 7.
    Tilesius von Tilenau WG (1793) Historia Pathologica Singlularis Cutis Turpitudinis: Jo Godofredi Rheinhardt viri Lannorum. SL Crucius, LeipzigGoogle Scholar
  8. 8.
    McKusick VA (1998) Mendelian inheritance in man: a catalog of human genes and genetic disorders. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  9. 9.
    Ruggieri M, Polizzi A (2003) From Aldrovandi’s “Homuncio” (1592) to Buffon’s girl (1749) and the “Wart Man” of Tilesius (1793): antique illustrations of mosaicism in neurofibromatosis? J Med Genet 40:227–232Google Scholar
  10. 10.
    Macklin MT (1960) Inheritance of cancer of stomach and large intestine in man. J Natl Cancer Inst 24:551–571PubMedGoogle Scholar
  11. 11.
    Norris W (1820) Case of fungoid disease. Edinb Med Surg J 16:562–565Google Scholar
  12. 12.
    Greene MH, Fraumeni JF (1979) The hereditary variant of malignant melanoma. In: Clark WH Jr (ed) Human malignant melanoma. Grune & Stratton, New YorkGoogle Scholar
  13. 13.
    Lynch HT, Brand RE, Hogg D et al (2002) Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical multiple mole melanoma-pancreatic carcinoma syndrome. Cancer 94:84–96PubMedCrossRefGoogle Scholar
  14. 14.
    Goldstein AM, Chan M, Harland M et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Res 66:9818–9828Google Scholar
  15. 15.
    Goldstein AM (2004) Familial melanoma, pancreatic cancer, and germline CDKN2A mutations. Hum Mutat 23:630PubMedCrossRefGoogle Scholar
  16. 16.
    Parker JF, Florell SR, Alexander A et al (2003) Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 139:1019–1025PubMedCrossRefGoogle Scholar
  17. 17.
    Cubilla AL, Fitzgerald PJ (1976) Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res 36:2690–2698PubMedGoogle Scholar
  18. 18.
    Furukawa T, Chiba R, Kobari M et al (1994) Varying grades of epithelial atypia in the pancreatic ducts of humans. Classification based on morphometry and multivariate analysis and correlated with positive reactions of carcinoembryonic antigen. Arch Pathol Lab Med 118:227–234PubMedGoogle Scholar
  19. 19.
    Hruban RH, Goggins M, Parsons J et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6:2969–2972PubMedGoogle Scholar
  20. 20.
    Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedCrossRefGoogle Scholar
  21. 21.
    Klimstra DS, Longnecker DS (1994) K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 145:1547–1550PubMedGoogle Scholar
  22. 22.
    Brat DJ, Lillemoe KD, Yeo CJ et al (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22:163–169PubMedCrossRefGoogle Scholar
  23. 23.
    Brockie E, Anand A, Albores-Saavedra J (1998) Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pathol 2:286–292PubMedCrossRefGoogle Scholar
  24. 24.
    Hruban RH, Canto MI, Yeo CJ (2001) Prevention of pancreatic cancer and strategies for management of familial pancreatic cancer. Dig Dis 19:76–84PubMedCrossRefGoogle Scholar
  25. 25.
    Almoguera C, Shibata D, Forrester K et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554PubMedCrossRefGoogle Scholar
  26. 26.
    Manu M, Buckels J, Bramhall S (2000) Molecular technology and pancreatic cancer. Br J Surg 87:840–853PubMedCrossRefGoogle Scholar
  27. 27.
    Caldas C, Hahn SA, Hruban RH et al (1994) Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54:3568–3573PubMedGoogle Scholar
  28. 28.
    Mulcahy HE, Lyautey J, Lederrey C et al (1998) A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res 4:271–275PubMedGoogle Scholar
  29. 29.
    Mulcahy H, Farthing MJ (1999) Diagnosis of pancreatico-biliary malignancy: detection of gene mutations in plasma and stool. Ann Oncol 10(Suppl 4):114–117PubMedCrossRefGoogle Scholar
  30. 30.
    Nakaizumi A, Uehara H, Takenaka A et al (1999) Diagnosis of pancreatic cancer by cytology and measurement of oncogene and tumor markers in pure pancreatic juice aspirated by endoscopy. Hepatogastroenterology 46:31–37PubMedGoogle Scholar
  31. 31.
    Tada M, Omata M, Kawai S et al (1993) Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 53:2472–2474PubMedGoogle Scholar
  32. 32.
    Wakabayashi T, Sawabu N, Watanabe H et al (1996) Detection of K-ras point mutation at codon 12 in pure pancreatic juice collected 3 years and 6 months before the clinical diagnosis of pancreatic cancer. Am J Gastroenterol 91:1848–1851PubMedGoogle Scholar
  33. 33.
    Watanabe H, Sawabu N, Ohta H et al (1993) Identification of K-ras oncogene mutations in the pure pancreatic juice of patients with ductal pancreatic cancers. Jpn J Cancer Res 84:961–965PubMedGoogle Scholar
  34. 34.
    Yamada T, Nakamori S, Ohzato H et al (1998) Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res 4:1527–1532PubMedGoogle Scholar
  35. 35.
    Caldas C (1999) Biliopancreatic malignancy: screening the at risk patient with molecular markers. Ann Oncol 10(Suppl 4):156Google Scholar
  36. 36.
    Hiyama E, Kodama T, Shinbara K et al (1997) Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res 57:326–331PubMedGoogle Scholar
  37. 37.
    Uehara H, Nakaizumi A, Tatsuta M et al (1999) Diagnosis of pancreatic cancer by detecting telomerase activity in pancreatic juice: comparison with K-ras mutations. Am J Gastroenterol 94:2513–2518PubMedCrossRefGoogle Scholar
  38. 38.
    Brand R (2001) The diagnosis of pancreatic cancer. Cancer J 7:287–297PubMedGoogle Scholar
  39. 39.
    Saisho H, Yamaguchi T (2004) Diagnostic imaging for pancreatic cancer: computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas 28:273–278PubMedCrossRefGoogle Scholar
  40. 40.
    Murr MM, Sarr MG, Oishi AJ et al (1994) Pancreatic cancer. CA Cancer J Clin 44:304–318PubMedCrossRefGoogle Scholar
  41. 41.
    Niederau C, Grendell JH (1992) Diagnosis of pancreatic carcinoma: imaging techniques and tumor markers. Pancreas 7:66–86PubMedCrossRefGoogle Scholar
  42. 42.
    Aliperti G (1996) Complications related to diagnostic and therapeutic endoscopic retrograde cholangiopancreatography. Gastrointest Endosc Clin North Am 6:379–407Google Scholar
  43. 43.
    Yasuda K, Mukai H, Nakajima M (1995) Endoscopic ultrasonography diagnosis of pancreatic cancer. Gastrointest Endosc Clin North Am 5:699–712Google Scholar
  44. 44.
    DeWitt J, Devereaux B, Chriswell M et al (2004) Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med 141:753–763PubMedGoogle Scholar
  45. 45.
    Brentnall TA, Bronner MP, Byrd DR et al (1999) Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med 131:247–255PubMedGoogle Scholar
  46. 46.
    Canto MI, Goggins M, Hruban RH et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4:766–781PubMedCrossRefGoogle Scholar
  47. 47.
    Bhutani MS (1999) Endoscopic ultrasonography: changes of chronic pancreatitis in asymptomatic and symptomatic alcoholic patients. J Ultrasound Med 18:455–462PubMedGoogle Scholar
  48. 48.
    Kimmey MB, Bronner MP, Byrd DR et al (2002) Endoscopic ultrasound screening for familial pancreatic cancer. Gastrointest Endosc 56(Suppl 4):S82–S86PubMedCrossRefGoogle Scholar
  49. 49.
    Steinberg W (1990) The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol 85:350–355PubMedGoogle Scholar
  50. 50.
    Kim JE, Lee KT, Lee JK et al (2004) Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 19:182–186PubMedCrossRefGoogle Scholar
  51. 51.
    Cho E, Chen WY, Hunter DJ et al (2006) Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med 166:2253–2259PubMedCrossRefGoogle Scholar
  52. 52.
    Lowenfels AB, Maisonneuve P, Whitcomb DC et al (2001) Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 286:169–170PubMedCrossRefGoogle Scholar
  53. 53.
    Rulyak SJ, Lowenfels AB, Maisonneuve P et al (2003) Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 124:1292–1299PubMedCrossRefGoogle Scholar
  54. 54.
    Pogue-Geile KL, Chen R, Bronner MP et al (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516PubMedCrossRefGoogle Scholar
  55. 55.
    Eberle MA, Pfützer R, Pogue-Geile KL et al (2002) A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet 70:1044–1048PubMedCrossRefGoogle Scholar
  56. 56.
    Otey CA, Rachlin A, Moza M et al (2005) The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int Rev Cytol 246:31–58PubMedCrossRefGoogle Scholar
  57. 57.
    Slater E, Amrillaeva V, Fendrich V et al (2007) Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Med 4:e164PubMedCrossRefGoogle Scholar
  58. 58.
    Zogopoulos G, Rothenmund H, Eppel A et al (2007) The P239S palladin variant does not account for a significant fraction of hereditary or early onset pancreas cancer. Hum Genet 121:635–637PubMedCrossRefGoogle Scholar
  59. 59.
    Salaria SN, Illei P, Sharma R et al (2007) Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther 6:324–328PubMedCrossRefGoogle Scholar
  60. 60.
    Li D, Xie K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057PubMedCrossRefGoogle Scholar
  61. 61.
    Yeo CJ, Cameron JL, Lillemoe KD et al (1995) Pancreaticoduodenectomy for cancer of the head of the pancreas: 201 patients. Ann Surg 221:721–733PubMedCrossRefGoogle Scholar
  62. 62.
    Cameron JL, Tiall TS, Coleman J et al (2006) One thousand consecutive pancreaticoduodenenectomies. Ann Surg 244:10–15PubMedCrossRefGoogle Scholar
  63. 63.
    Bartsch DK, Sina-Frey M, Lang S et al (2002) CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236:730–737PubMedCrossRefGoogle Scholar
  64. 64.
    Kim J, Reber HA, Dry SM et al (2006) Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut 55:1598–1605PubMedCrossRefGoogle Scholar
  65. 65.
    Kaelin WG Jr (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290s–6295sPubMedCrossRefGoogle Scholar
  66. 66.
    Yee NS, Furth EE, Pack M (2003) Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers syndrome. Cancer Biol Ther 2:38–47PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Henry T. Lynch
    • 1
  • Ramon M. Fusaro
    • 1
  • Jane F. Lynch
    • 1
  • Randall Brand
    • 2
    • 3
  1. 1.Department of Preventive Medicine and Public HealthCreighton University School of MedicineOmahaUSA
  2. 2.Department of Internal MedicineEvanston Northwestern Health CareEvanstonUSA
  3. 3.University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations