Familial Cancer

, Volume 7, Issue 1, pp 41–52 | Cite as

The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside

  • C. Richard BolandEmail author
  • Minoru Koi
  • Dong K. Chang
  • John M. Carethers


Lynch syndrome is an inherited disease caused by a germline mutation in one of four DNA mismatch repair (MMR) genes. The clinical manifestations can be somewhat variable depending upon which gene is involved, and where the mutation occurs. Moreover, the approach to the diagnosis of Lynch syndrome is becoming more complex as more is learned about the disease, and one needs to understand how the DNA MMR proteins function, and what makes them malfunction, to have an optimal appreciation of how to interpret diagnostic studies such as microsatellite instability and immunohistochemistry of the DNA MMR proteins. Finally, an understanding of the role of the DNA MMR system in regulation of the cell cycle and the response to DNA damage helps illuminate the differences in natural history and response to chemotherapeutic agents seen in Lynch syndrome.


Lynch syndrome HNPCC DNA mismatch repair Microsatellite instability MSH2 MLH1 MSH6 PMS2 Colorectal cancer Familial cancer 


  1. 1.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932PubMedCrossRefGoogle Scholar
  2. 2.
    Acharya S, Wilson T, Gradia S et al (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci USA 93(24):13629–13634PubMedCrossRefGoogle Scholar
  3. 3.
    Gradia S, Subramanian D, Wilson T et al (1999) hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3(2):255–261PubMedCrossRefGoogle Scholar
  4. 4.
    Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308PubMedCrossRefGoogle Scholar
  5. 5.
    Heinen CD, Schmutte C, Fishel R (2002) DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol Ther 1(5):477–485PubMedGoogle Scholar
  6. 6.
    Carethers JM, Hawn MT, Chauhan DP et al (1996) Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N’-nitro-N-nitrosoguanidine. J Clin Invest 98(1):199–206PubMedCrossRefGoogle Scholar
  7. 7.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMedGoogle Scholar
  8. 8.
    Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454PubMedGoogle Scholar
  9. 9.
    Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969PubMedCrossRefGoogle Scholar
  10. 10.
    Chang DK, Metzgar D, Wills C, Boland CR (2001) Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. Genome Res 11(7):1145–1146PubMedCrossRefGoogle Scholar
  11. 11.
    Perucho M (1996) Microsatellite instability: the mutator that mutates the other mutator. Nat Med 2(6):630–631PubMedCrossRefGoogle Scholar
  12. 12.
    Koi M, Umar A, Chauhan DP et al (1994) Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res 54(16):4308–4312PubMedGoogle Scholar
  13. 13.
    Umar A, Koi M, Risinger JI et al (1997) Correction of hypermutability, N-methyl-N′-nitro-N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res 57(18):3949–3955PubMedGoogle Scholar
  14. 14.
    Watanabe Y, Haugen-Strano A, Umar A et al (2000) Complementation of an hMSH2 defect in human colorectal carcinoma cells by human chromosome 2 transfer. Mol Carcinog 29(1):37–49PubMedCrossRefGoogle Scholar
  15. 15.
    Arnold CN, Goel A, Boland CR (2003) Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 106(1):66–73PubMedCrossRefGoogle Scholar
  16. 16.
    Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275(24):18424–18431PubMedCrossRefGoogle Scholar
  17. 17.
    Kolodner RD, Tytell JD, Schmeits JL et al (1999) Germ-line msh6 mutations in colorectal cancer families. Cancer Res 59(20):5068–5074PubMedGoogle Scholar
  18. 18.
    Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17(3):271–272PubMedCrossRefGoogle Scholar
  19. 19.
    Kariola R, Hampel H, Frankel WL, Raevaara TE, de la Chapelle A, Nystrom-Lahti M (2004) MSH6 missense mutations are often associated with no or low cancer susceptibility. Br J Cancer 91(7):1287–1292PubMedCrossRefGoogle Scholar
  20. 20.
    Hendriks YM, Wagner A, Morreau H et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127(1):17–25PubMedCrossRefGoogle Scholar
  21. 21.
    Akiyama Y, Tsubouchi N, Yuasa Y (1997) Frequent somatic mutations of hMSH3 with reference to microsatellite instability in hereditary nonpolyposis colorectal cancers. Biochem Biophys Res Commun 236(2):248–252PubMedCrossRefGoogle Scholar
  22. 22.
    de Jong AE, van Puijenbroek M, Hendriks Y et al (2004) Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer Res 10(3):972–980PubMedCrossRefGoogle Scholar
  23. 23.
    Truninger K, Menigatti M, Luz J et al (2005) Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 128(5):1160–1171PubMedCrossRefGoogle Scholar
  24. 24.
    Hendriks YM, Jagmohan-Changur S, van der Klift HM et al (2006) Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology 130(2):312–322PubMedCrossRefGoogle Scholar
  25. 25.
    Hienonen T, Laiho P, Salovaara R et al (2003) Little evidence for involvement of MLH3 in colorectal cancer predisposition. Int J Cancer 106(2):292–296PubMedCrossRefGoogle Scholar
  26. 26.
    Wijnen J, van der Klift H, Vasen H et al (1998) MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet 20(4):326–328PubMedCrossRefGoogle Scholar
  27. 27.
    Lipkin SM, Rozek LS, Rennert G et al (2004) The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet 36(7):694–699PubMedCrossRefGoogle Scholar
  28. 28.
    Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275(37):29178PubMedGoogle Scholar
  29. 29.
    Chang CL, Marra G, Chauhan DP et al (2002) Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol 283(1):C148–C154PubMedGoogle Scholar
  30. 30.
    Koshiji M, To KK, Hammer S et al (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17(6):793–803PubMedCrossRefGoogle Scholar
  31. 31.
    Boland CR, Fishel R (2005) Lynch syndrome: form, function, proteins, and basketball. Gastroenterology 129(2):751–755PubMedGoogle Scholar
  32. 32.
    Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549PubMedGoogle Scholar
  33. 33.
    Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57(5):808–811PubMedGoogle Scholar
  34. 34.
    Chadwick RB, Meek JE, Prior TW, Peltomaki P, de la Chapelle A (2000) Polymorphisms in a pseudogene highly homologous to PMS2. Hum Mutat 16(6):530PubMedCrossRefGoogle Scholar
  35. 35.
    Gryfe R, Kim H, Hsieh ET et al (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342(2):69–77PubMedCrossRefGoogle Scholar
  36. 36.
    Hawn MT, Umar A, Carethers JM et al (1995) Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res 55(17):3721–3725PubMedGoogle Scholar
  37. 37.
    Carethers JM, Smith EJ, Behling CA et al (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 126(2):394–401PubMedCrossRefGoogle Scholar
  38. 38.
    Aebi S, Kurdi-Haidar B, Gordon R et al (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56(13):3087–3090PubMedGoogle Scholar
  39. 39.
    Carethers JM, Chauhan DP, Fink D et al (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117(1):123–131PubMedCrossRefGoogle Scholar
  40. 40.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349(3):247–257PubMedCrossRefGoogle Scholar
  41. 41.
    Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11(23):8332–8340PubMedCrossRefGoogle Scholar
  42. 42.
    Jover R, Zapater P, Castells A et al (2006) Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 55(6):848–855PubMedCrossRefGoogle Scholar
  43. 43.
    Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035PubMedCrossRefGoogle Scholar
  44. 44.
    Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • C. Richard Boland
    • 1
    Email author
  • Minoru Koi
    • 1
  • Dong K. Chang
    • 2
  • John M. Carethers
    • 3
  1. 1.Department of Internal Medicine and Sammons Cancer CenterBaylor University Medical Center (250 Hoblitzelle)DallasUSA
  2. 2.Sungkyunkwan University School of MedicineSamsung Medical CenterSeoulKorea
  3. 3.Department of MedicineUniversity of CaliforniaSan DiegoUSA

Personalised recommendations