Familial Cancer

, Volume 4, Issue 1, pp 61–68

Imaging of pheochromocytoma and paraganglioma



Paragangliomas are tumours that arise within the sympathetic nervous system originating from the neural crest. These tumours can be found anywhere from the neck to the pelvis in locations of sympathetic ganglions. Although in the majority of paragangliomas the diagnosis is based on measuring catecholamines and metabolites in plasma or urine, imaging plays an important preoperative role. Today, there are several morphological and radionuclide imaging methods available that predict tumour localisation and tumour extent and give anatomic information to the surgeon. MRI is the morphological imaging modality of choice in localising pheochromocytomas and extra-adrenal paragangliomas. It provides excellent anatomic detail and has the advantage of lacking ionising radiation. The overall accuracy of computed tomography (CT) in detecting primary adrenal pheochromocytomas is very high, but CT lacks in specificity as difficulties may occur in distinguishing between paragangliomas and other tumour entities. The major advantages of radionuclide imaging are very high specificity and routinely performed whole-body scanning. Furthermore, metabolic imaging is not influenced by artifacts like scar tissue or metallic clips in post-surgical follow-up. Currently, a reported specificity of 99% and a cumulative sensitivity of about 90% in paragangliomas make 123I-MIBG the most important nuclear imaging method. However, 18F-DOPA-PET seems to be a very promising procedure which offers higher accuracy. The higher spatial resolution of PET-scanners enables the detection of small lesions not visualised with 123I-MIBG. Both use of radiolabelled somatostatin analogue like 111In-pentetreotide and 18F-FDG is limited due to low specificity of the tracers and should be restricted to MIBG- and F-DOPA-negative cases.


computed tomography DOPA-PET FDG-PET magnetic resonance imaging metaiodobenzylguanidin paraganglioma pheochromocytoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zak, F. 1954An expanded concept of glomus tissueNY State J Med.541153Google Scholar
  2. 2.
    Capella, C, Riva, C, Cornaggia, M,  et al. 1988Histopathology, cytology and cytochemistry of pheochromocytomas and paragangliomas including chemodectomasPath Res Pract.18317687PubMedGoogle Scholar
  3. 3.
    Riede, UN, Saeger, W. 1993

    Paraganglionäres System

    Riede, UNSchaefer, HW eds. Allgemeine und Spezielle PathologieThiemeStuttgart, Germany98991
    Google Scholar
  4. 4.
    Parkin, JL. 1981Familial multiple glomus tumors and pheochromocytomasAnn Otol Rhinol Laryngol1981603Google Scholar
  5. 5.
    Neumann, HPH, Bausch, B, Mc Whinney, SR,  et al. 2002Germ-line mutations in nonsyndromic pheochromocytomaN Engl J Med.346145966CrossRefPubMedGoogle Scholar
  6. 6.
    Neumann, HPH, Berger, DP, Sigmund, G,  et al. 1993Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel–Lindau diseaseN Engl J Med.32915318CrossRefPubMedGoogle Scholar
  7. 7.
    Baysal, BE, Ferell, RE, Willet-Brozick, JE,  et al. 2000Mutations in SDHD, a mitochondrial complex II gene, in hereditary paragangliomasScience.28784851CrossRefPubMedGoogle Scholar
  8. 8.
    Gruffermann, S, Gillman, MW, Pasternack, LR,  et al. 1980Familial carotid body tumors: case report and epidemiologic review, Cancer.46211622Google Scholar
  9. 9.
    Tischler, A, Dichter, MA. 1977Neuroendocrine neoplasm and their cells of originN Engl J Med.29691925PubMedGoogle Scholar
  10. 10.
    Chang, A, Glazer, HS, Lee, JK,  et al. 1987Adrenal gland: MR imagingRadiology.1631238PubMedGoogle Scholar
  11. 11.
    Schultz, CL. 1986CT and MR of the adrenal glandsSemin Ultrasound721923Google Scholar
  12. 12.
    Mitchell, DG, Crovello, M, Matteucci, T,  et al. 1992Benign adrenocortical masses: Diagnosis with chemical shift MR imagingRadiology.18534551PubMedGoogle Scholar
  13. 13.
    Bilbey, JH, McLoughlin, RF, Kurkjian, PS,  et al. 1995MR imaging of adrenal masses: Value of chemical-shift imaging for distinguishing adenomas from other tumoursAm J Roentgenol.16463742Google Scholar
  14. 14.
    Bitter, DA, Ross, DS. 1989Incidentally discovered adrenal massesAm J Surg.15815961CrossRefPubMedGoogle Scholar
  15. 15.
    Outwater, EK, Siegelman, ES, Huang, AB, Birnbaum, BA. 1996Adrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequencesRadiology2018806PubMedGoogle Scholar
  16. 16.
    Arnold, SM, Strecker, R, Scheffler, K,  et al. 2003Dynamic contrast enhancement of paragangliomas of the head and neck: evaluation with time-resolved 2D MREur J Radiol.7160811Google Scholar
  17. 17.
    Varghese, JC, Hahn, PF, Papanicolaou, N,  et al. 1997MR differentiation of pheochromocytoma from other adrenal lesions based on qualitative analysis of T2 relaxation timesClin Radiol.526036PubMedGoogle Scholar
  18. 18.
    Maurea, S, Cuocolo, A, Reynolds, JC,  et al. 1996Diagnostic imaging in patients with paragangliomasComputed tomography, magnetic resonance and MIBG scintigraphy comparison. Q J Nucl Med.4036571Google Scholar
  19. 19.
    Mayo-Smith, WW, Lee, MJ, McNicholas, MMJ,  et al. 1995Characterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer clinical results versus quantitative measuresAm J Roentgenol.165915Google Scholar
  20. 20.
    McGahan, JP. 1988Adrenal gland: MR imagingRadiology.1662845PubMedGoogle Scholar
  21. 21.
    Francis, IR, Gross, MD, Shapiro, B,  et al. 1992Integrated imaging of adrenal diseaseRadiology.184113PubMedGoogle Scholar
  22. 22.
    Welch, TJ, Sheedy, PF, Heerden, JA,  et al. 1983Pheochromocytoma: Value of computed tomographyRadiology.1485013PubMedGoogle Scholar
  23. 23.
    Manger, WM, Gifford, RW,Jr, Hoffman, BB. 1985Pheochromocytoma: a clinical and experimental overviewCurr Probl Cancer.9189Google Scholar
  24. 24.
    Mukherjee, JJ, Peppercorn, PD, Reznek, RH,  et al. 1997Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levelsRadiology.20222731PubMedGoogle Scholar
  25. 25.
    Quint, LE, Glazer, GM, Francis, IR,  et al. 1987Pheochromocytoma and paraganlioma: comparison of MRI imaging with CT and I-131 MIBG scintigraphyRadiology.1658993PubMedGoogle Scholar
  26. 26.
    Velchik, MG, Alavi, A, Kressel, HY, Engelman, K. 1989Localization of pheochromocytoma: MIGB, CT, and MRI correlationJ Nucl Med.3032836PubMedGoogle Scholar
  27. 27.
    Wieland, DM, Wu, JL, Brown, LE,  et al. 1980Radiolabelled adrenergic neuron blocking agents: adrenomedullary imaging with 131I-iodobenzylguanidineJ Nucl Med.2134953PubMedGoogle Scholar
  28. 28.
    Beierwaltes, WH. 1991Endocrine imaging: parathyroid, adrenal cortex and medulla, and other endocrine tumorsPart II. J Nucl Med.32162739Google Scholar
  29. 29.
    McEwan, AJ, Shapiro, B, Sisson, JC,  et al. 1985Radioiodobezylguanidine for the scintigraphic location and therapy of adrenergic tumorsJ Nucl Med2134953Google Scholar
  30. 30.
    Smets, L, Loesberg, L, Janssen, M,  et al. 1989Active uptake and extravesicular storage of metaiodobenzylguanidin in human SK-N-SH cellsCancer Res.4929414PubMedGoogle Scholar
  31. 31.
    Shapiro B, Gross MD. Radioiodinated MIBG for the diagnostic scintigraphy and internal radiotherapy of neuroendocrine tumors. In: Troncone L (ed): I tumori della cresta neurale. Modena, Italy: Arcadia; 65–94Google Scholar
  32. 32.
    Hoefnagel, CA. 1994Metaiodobenzylguanidin and somatostatin in oncology: role in the management of neural crest tumoursEur J Nucl Med.2156181PubMedGoogle Scholar
  33. 33.
    Piepsz, A, Hahn, K, Roca, I,  et al. 1990A radiopharmaceuticals schedule for imaging in paediatricsEur J Nucl Med.171279PubMedGoogle Scholar
  34. 34.
    Solanki, KK, BomanjiJ Moyes, J,  et al. 1992A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled metaiodobenzylguanidin (MIBG)Nucl Med Comm.1351321Google Scholar
  35. 35.
    Nakajo, M, Shapiro, B, Copp, J,  et al. 1983The normal and abnormal distribution of the adrenomedullary imaging agent 131-I-iodobenzylguanidin (131I-MIBG) in man: evaluation by scintigraphyJ Nucl Med.2467282PubMedGoogle Scholar
  36. 36.
    Krenning, EP, Kwekkeboom, DJ, Bakker, WH,  et al. 1993Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and 123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patientsEur J Nucl Med.2071631PubMedGoogle Scholar
  37. 37.
    Tenebaum, F, Lumbroso, J, Schlumberger, M,  et al. 1995Comparison of radiolabelled octreotide and metaiodobenzylguanidin (MIBG) scintigraphy in malignant pheochromocytomaJ Nucl Med.3616PubMedGoogle Scholar
  38. 38.
    Kwekkeboom, DJ, Urk, H, Pauw, BKH,  et al. 1993Octreotide scintigraphy for detection of paragangliomasJ Nucl Med.348738PubMedGoogle Scholar
  39. 39.
    Kopf, D, Bockisch, A, Steinert, H,  et al. 1997Octreotide scintigraphy and catecholamine response to an octreotide challenge in malignant pheochromocytomaClin Endocrinol.463944Google Scholar
  40. 40.
    Bergström M, Eriksson B, Öberg K et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med 1996; 37: 32–7Google Scholar
  41. 41.
    Ilias, I, Yu, J, Carrasquillo, JA,  et al. 2003Superiority of 6-[(18)f] fluorodopamine positron emission tomography versus [(131)i]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytomaJ Clin Endocrinol Metab.88408374PubMedGoogle Scholar
  42. 42.
    Hoegerle, S, Nitzsche, E, Altehoefer, C,  et al. 2003Pheochromocytomas: detection with 18F DOPA whole-body PET – initial resultsRadiology.22250712Google Scholar
  43. 43.
    Pacak, K, Eisenhofer, G, Carasquillo, JA,  et al. 2001[18F] fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytomaHypertension.3868PubMedGoogle Scholar
  44. 44.
    Hoegerle, S, Altehoefer, C, Ghanem, N,  et al. 200118F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levelsEur J Nucl Med.286471PubMedGoogle Scholar
  45. 45.
    Hoegerle, S, Ghanem, N, Altehoefer, C,  et al. 200318F-DOPA positron emission tomography for the detection of glomus tumoursEur J Nucl Med Mol Imag.3068994Google Scholar
  46. 46.
    Hoegerle, S, Altehoefer, C, Ghanem, N,  et al. 2001Whole-body18F-DOPA-PET for detection of gastrointestinal carcinoid tumorsRadiology.22037380PubMedGoogle Scholar
  47. 47.
    Boland, GW, Goldberg, MA, Lee, MJ,  et al. 1995Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2(F 18) fluoro-2-deoxy-D-glucoseRadiology.1941316PubMedGoogle Scholar
  48. 48.
    Yun, M, Kim, W, Alnafisi, N,  et al. 200118F-FDG-PET in characterizing adrenal lesions detected on CT or MRIJ Nucl Med.4217959PubMedGoogle Scholar
  49. 49.
    Erasmus, JJ, Patz, EF,Jr, McAdams, HP,  et al. 1997Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomographyAm J Roentgenol.168135760Google Scholar
  50. 50.
    Maurea, S, Mainolfi, C, Wang, H,  et al. 1996Positron emission tomography (PET) with flurodeoxyglucose F 18 in the study of adrenal masses: Comparison of benign and malignant lesionsRadiol Medica.927827Google Scholar
  51. 51.
    Shulkin, BL, Thompson, NM, Shapiro, B,  et al. 1999Pheochromocytomas: imaging with 2-[Fluorine-18]fluoro-2-deoxy-D-glucose PETRadiology.2123541PubMedGoogle Scholar
  52. 52.
    Neumann, DR, Basile, KE, Bravo, EL,  et al. 1996Malignant pheochromocytoma of the anterior mediastinum: PET findings with F-18-FDG and 82RbJ Comp Ass Tomog.203126Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Division of Nuclear MedicineUniversity Hospital FreiburgFreiburgGermany
  2. 2.Section of NeuroradiologyUniversity Hospital FreiburgGermany
  3. 3.Division of Diagnostic RadiologyUniversity Hospital FreiburgGermany

Personalised recommendations