A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant
Article
First Online:
- 3 Downloads
Abstract
For the almost Mathieu operator with small coupling constant, we describe the asymptotics of a monodromy matrix and of a series of spectral gaps.
Key words
almost Mathieu operator small coupling monodromy matrix asymptotics of spectral gapsPreview
Unable to display preview. Download preview PDF.
References
- [1]A. Avila and S. Jitomirskaya, Ann. of Math., 170:1 (2009), 303–342.MathSciNetCrossRefGoogle Scholar
- [2]V. Buslaev and A. Fedotov, Adv. Theor. Math. Phys., 5:6 (2001), 1105–1168.MathSciNetCrossRefGoogle Scholar
- [3]V. Babich, M. Lyalinov, and V. Grikurov, Diffraction theory: the Sommerfeld–Malyuzhinets technique, Alpha Science, Oxford, 2008.Google Scholar
- [4]L. D. Faddeev, R. M. Kashaev, and A. Yu. Volkov, Comm. Math. Phys., 219:1 (2001), 199–219.MathSciNetCrossRefGoogle Scholar
- [5]A. Fedotov, Algebra i Analiz, 25:2 (2013), 203–235; English transl.: St. Petersburg Math. J., 25 (2014), 303–325.Google Scholar
- [6]A. Fedotov and F. Klopp, Comm. Math. Phys., 227:1 (2002), 1–92.MathSciNetCrossRefGoogle Scholar
- [7]J. P. Guillement, B. Helffer, and P. Treton, J. Phys. France, 50:15 (1989), 2019–2058.CrossRefGoogle Scholar
- [8]B. Helffer and J. Sjöstrand, Mém. Soc. Math. France (nouv. série), 34 (1988), 1–113.Google Scholar
- [9]I. Krasovsky, Comm. Math. Phys., 351:1 (2017), 419–439.MathSciNetCrossRefGoogle Scholar
- [10]M. Wilkinson, Phys. D, 21:2–3 (1986), 341–354.MathSciNetCrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018