Functional Analysis and Its Applications

, Volume 52, Issue 4, pp 311–315 | Cite as

A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant

  • A. A. FedotovEmail author


For the almost Mathieu operator with small coupling constant, we describe the asymptotics of a monodromy matrix and of a series of spectral gaps.

Key words

almost Mathieu operator small coupling monodromy matrix asymptotics of spectral gaps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Avila and S. Jitomirskaya, Ann. of Math., 170:1 (2009), 303–342.MathSciNetCrossRefGoogle Scholar
  2. [2]
    V. Buslaev and A. Fedotov, Adv. Theor. Math. Phys., 5:6 (2001), 1105–1168.MathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Babich, M. Lyalinov, and V. Grikurov, Diffraction theory: the Sommerfeld–Malyuzhinets technique, Alpha Science, Oxford, 2008.Google Scholar
  4. [4]
    L. D. Faddeev, R. M. Kashaev, and A. Yu. Volkov, Comm. Math. Phys., 219:1 (2001), 199–219.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Fedotov, Algebra i Analiz, 25:2 (2013), 203–235; English transl.: St. Petersburg Math. J., 25 (2014), 303–325.Google Scholar
  6. [6]
    A. Fedotov and F. Klopp, Comm. Math. Phys., 227:1 (2002), 1–92.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. P. Guillement, B. Helffer, and P. Treton, J. Phys. France, 50:15 (1989), 2019–2058.CrossRefGoogle Scholar
  8. [8]
    B. Helffer and J. Sjöstrand, Mém. Soc. Math. France (nouv. série), 34 (1988), 1–113.Google Scholar
  9. [9]
    I. Krasovsky, Comm. Math. Phys., 351:1 (2017), 419–439.MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Wilkinson, Phys. D, 21:2–3 (1986), 341–354.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations