Functional Analysis and Its Applications

, Volume 52, Issue 4, pp 270–289 | Cite as

On Some Free Algebras of Automorphic Forms

  • E. B. VinbergEmail author


It is proved that, for n = 8, 9, 10, the natural algebra of automorphic forms of the group O+2,n(ℤ) acting on the n-dimensional symmetric domain of type IV is free, and the weights of generators are found. This extends results obtained in the author’s previous paper for n ≤ 7. On the other hand, as proved in a recent joint paper of the author and O. V. Shvartsman, similar algebras of automorphic forms cannot be free for n > 10.

Key words

symmetric domain automorphic form reflection group K3-surface moduli space period map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. C. Shephard and J. A. Todd, “Finite unitary reflection groups,” Canad. J. Math., 6 (1954), 274–304.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Chevalley, “Invariants of finite groups generated by reflections,” Amer. J. Math., 77 (1955), 778–782.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    O. V. Shvartsman, “Cocycles of complex reflection groups and the strong simple-connectedness of quotient spaces,” in: Problems in Group Theory and Homological Algebra [in Russian], Yaroslav. Gos. Univ., Yaroslavl, 1991, 32–39.Google Scholar
  4. [4]
    E. B. Vinberg and V. L. Popov, “Invariant Theory,” in: Algebraic Theory–4, Itogi Nauki i Tekhniki. Sovrem. Probl. Mat. Fund. Napr., vol. 55, VINITI, Moscow, 1989, 137–309; English transl.: in: Encycl. Math. Sci., vol. 55, Algebrai Geometry–IV, Springer-Verlag, Berlin, 123–278.Google Scholar
  5. [5]
    E. B. Vinberg, “Some free algebras of automorphic forms on symmetric domains of type IV,” Transform. Groups, 15:3 (2010), 701–741.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    W. L. Baily and A. Borel, “Compactification of arithmetic quotients of bounded symmetric domains,” Ann. of Math. (2), 84 (1966), 442–528.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Igusa, “On Siegel modular forms of genus two,” Amer. J. Math., 84 (1962), 175–200.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. B. Vinberg, “On the algebra of Siegel modular forms of genus 2,” Trudy Moskov. Mat. Obshch., 74:1, 1–16; English transl.: Trans. Moscow Math. Soc., 74 (2013), 1–13.Google Scholar
  9. [9]
    E. B. Vinberg and O. V. Shvartsman, “A criterion of smoothness at infinity for an arithmetic quotient of the future tube,” Funkts. Anal. Prilohzen., 51:1 (2017), 40–59; English transl.: Functional Anal. Appl., 51:1 (2017), 32–47.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications,” Izv. Akad. Nauk SSSR, Ser. Mat., 43:1 (1979), 111–177; English transl.: Math. USSR Izv., 14:1 (1980), 103–167.MathSciNetzbMATHGoogle Scholar
  11. [11]
    E. B. Vinberg, “On groups of unit elements of certain quadratic forms,” Mat. Sb., 87(129):1 (1972), 18–36; English transl.: Math. USSR Sb., 16:1 (1972), 17–35.MathSciNetzbMATHGoogle Scholar
  12. [12]
    B. Saint-Donat, “Projective models of K3 surfaces,” Amer. J. Math., 96 (1974), 602–639.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    E. B. Vinberg, “The two most algebraic K3 surfaces,” Math. Ann., 265:1 (1983), 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Johnsen and A. L. Knutsen, K3 Projective Models in Scrolls, Lecture Notes in Math., Springer-Verlag, Berlin, 2004.Google Scholar
  15. [15]
    V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps, vol. 1, Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser, Boston–Basel–Stuttgart, 1985.Google Scholar
  16. [16]
    Vik. S. Kulikov and P. F. Kurchanov, “Complex algebraic manifolds: periods of integrals, Hodge structures,” in: Algebraic geometry–3, Itogi Nauki i Tekhniki. Sovrem. Probl. Mat. Fund. Napr., vol. 36, VINITI, Moscow, 1989, 5–231; English transl.: in: Encycl. Math. Sci., vol. 36, Algebraic Geometry–III, Springer-Verlag, Berlin, 1998, 1–218.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Mechanics and Mathematics FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations