Advertisement

Functional Analysis and Its Applications

, Volume 52, Issue 2, pp 158–161 | Cite as

Elements of Potential Theory on Carnot Groups

  • M. V. Ruzhansky
  • D. Suragan
Article
  • 33 Downloads

Abstract

We propose and study elements of potential theory for the sub-Laplacian on homogeneous Carnot groups. In particular, we show the continuity of the single-layer potential and establish Plemelj-type jump relations for the double-layer potential. As a consequence, we derive a formula for the trace on smooth surfaces of the Newton potential for the sub-Laplacian. Using this, we construct a sub-Laplacian version of Kac’s boundary value problem.

Key words

sub-Laplacian integral boundary condition homogeneous Carnot group Newton potential layer potentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin–Heidelberg, 2007.zbMATHGoogle Scholar
  2. [2]
    D. Danielli, N. Garofalo, and D. Nhieu, Adv. Math., 215 (2007), 292–378.MathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Fischer and M. Ruzhansky, in: Fourier Analysis, Trends in Mathematics, Birkhäuser, 2014, 107–132.CrossRefGoogle Scholar
  4. [4]
    V. Fischer and M. Ruzhansky, C. R. Acad. Sci. Paris, Ser I, 352:3 (2014), 197–204.CrossRefGoogle Scholar
  5. [5]
    V. Fischer and M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progress inMathematics, vol. 314, Birkhäuser, 2016.Google Scholar
  6. [6]
    G. B. Folland, Ark. Mat., 13:2 (1975), 161–207.MathSciNetCrossRefGoogle Scholar
  7. [7]
    G. B. Folland, Comm. Partial Differential Equations, 2:2 (1977), 165–191.MathSciNetCrossRefGoogle Scholar
  8. [8]
    G. B. Folland and E. M. Stein, Comm. Pure Appl. Math., 27 (1974), 429–522.MathSciNetCrossRefGoogle Scholar
  9. [9]
    D. S. Jerison, J. Funct. Anal., 43 (1981), 97–142. 224–257.MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Kac, in: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 189–215.Google Scholar
  11. [11]
    M. Kac, Integration in Function Spaces and Some of Its Applications, Lezioni Fermiane. [Fermi Lectures], Accademia Nazionale dei Lincei, Pisa, 1980.Google Scholar
  12. [12]
    T. Sh. Kalmenov and D. Suragan, Dokl. Ross. Akad. Nauk, 428:1 (2009), 16–19. English transl.: Russian Acad. Sci. Dokl. Math., 80:2 (2009), 646–649.Google Scholar
  13. [13]
    T. Sh. Kalmenov and D. Suragan, Differential Equations, 48:4 (2012), 604–608.MathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Romero, Potential Theory for the Kohn Laplacian on the Heisenberg Group, PhD thesis, University of Minnesota, 1991.Google Scholar
  15. [15]
    L. P. Rothschild and E. M. Stein, Acta Math., 137:3–4 (1976), 247–320.MathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Ruzhansky and D. Suragan, Adv. Math., 308 (2017), 483–528. http://arxiv.org/abs/1512.02547.MathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Ruzhansky and D. Suragan, Proc. Amer. Math. Soc., 144:2 (2016), 709–721.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators. Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imperial CollegeLondonUnited Kingdom
  2. 2.Institute of Mathematics and Mathematical ModellingAlmatyKazakhstan

Personalised recommendations