Advertisement

Functional Analysis and Its Applications

, Volume 51, Issue 3, pp 221–224 | Cite as

On convolutions in Hilbert spaces

  • B. KanguzhinEmail author
  • M. Ruzhansky
  • N. Tokmagambetov
Brief Communications

Abstract

A convolution in a Hilbert space is defined, and its basic properties are studied.

Key words

convolution Hilbert space Riesz basis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. S. Agranovich, Funkts. Anal. Prilozhen., 13:4 (1979), 54–56; English transl.: Functional Anal. Appl., 13:4 (1979), 279–281.Google Scholar
  2. [2]
    M. S. Agranovich, Trudy Moskov. Mat. Obshch., 47 (1984), 22–67.MathSciNetGoogle Scholar
  3. [3]
    N. K. Bari, Uch. Zapiski Mosk. Gos. Un-ta. Matematika, 148:4 (1951), 69–107.Google Scholar
  4. [4]
    M. L. Cartwright, Quart. J. Math., Oxford Ser., 1:1 (1930), 38–59.CrossRefGoogle Scholar
  5. [5]
    J. Delgado and M. Ruzhansky, J. Anal. Math. (to appear); http://arxiv.org/abs/1404. 6479.Google Scholar
  6. [6]
    J. Delgado, M. Ruzhansky, and N. Tokmagambetov, J. Math. Pures Appl., 107:6 (2017), 758–783.MathSciNetCrossRefGoogle Scholar
  7. [7]
    I. M. Gelfand, Uch. Zapiski Mosk. Gos. Un-ta. Matematika, 148:4 (1951), 224–225.Google Scholar
  8. [8]
    N. I. Ionkin, Differents. Uravneniya, 13:2 (1977), 294–304.Google Scholar
  9. [9]
    B. Kanguzhin and N. Tokmagambetov, in: Fourier Analysis: Trends in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2014, 235–251.CrossRefzbMATHGoogle Scholar
  10. [10]
    B. Kanguzhin and N. Tokmagambetov, Ufimsk. Mat. Zh., 7:4 (2015), 80–92.CrossRefGoogle Scholar
  11. [11]
    B. Kanguzhin, N. Tokmagambetov, K. Tulenov, Complex Var. Elliptic Equ., 60:1 (2015), 107–117.MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Ruzhansky, V. Turunen, J. Fourier Anal. Appl., 16:6 (2010), 943–982.MathSciNetGoogle Scholar
  13. [13]
    M. Ruzhansky, N. Tokmagambetov, Int. Math. Res. Notices, 2016:12 (2016), 3548–3615.CrossRefGoogle Scholar
  14. [14]
    M. Ruzhansky, N. Tokmagambetov, Math. Model. Nat. Phenom., 12:1 (2017), 115–140.MathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Ruzhansky, N. Tokmagambetov, Lett. Math. Phys., 107:4 (2017), 591–618.MathSciNetCrossRefGoogle Scholar
  16. [16]
    E. C. Titchmarsh, Proc. London Math. Soc., 25 (1926), 283–302.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Imperial College LondonLondonUK

Personalised recommendations