Advertisement

Functional Analysis and Its Applications

, Volume 51, Issue 1, pp 48–65 | Cite as

Triangular reductions of the 2D toda hierarchy

  • A. V. IlinaEmail author
  • I. M. Krichever
Article
  • 37 Downloads

Abstract

New reductions of the 2D Toda equations associated with lower-triangular difference operators are proposed. Their explicit Hamiltonian description is obtained.

Key words

integrable systems bi-Hamiltonian theory Baker–Akhiezer function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems, Cambridge University Press, Cambridge, 2003.CrossRefzbMATHGoogle Scholar
  2. [2]
    I. M. Krichever, “Algebraic curves and non-linear difference equations,” Uspekhi Mat. Nauk, 33:4) (1978), 215–216; English transl: Russian Math. Surveys, 33:4 (1978), 255–256.MathSciNetzbMATHGoogle Scholar
  3. [3]
    I. M. Krichever, “The periodic non-Abelian Toda lattice and its two-dimensional generalization, Appendix to: B. A. Dubrovin, “Theta functions and non-linear equations,” UspekhiMat. Nauk, 36:2) (1981), 72–77; English transl.: Russian Math. Surveys, 36:2 (1981), 82–89.Google Scholar
  4. [4]
    I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations,” Funkts. Anal. Prilozhen., 22:3) (1988), 37–52; English transl.: Functional Anal. Appl., 22:3 (1988), 200–213.zbMATHGoogle Scholar
  5. [5]
    I. M. Krichever, “Commuting difference operators and the combinatorial Gale transform,” Funkts. Anal. Prilozhen., 49:3) (2015), 22–40; English transl.: Functional Anal. Appl., 49:3 (2015), 175–188.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    I. M. Krichever, “Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations,” in: Calogero–Moser–Sutherland models (Monréal, QC, 1997), CRM Ser. Math. Phys, Springer-Verlag, New-York, 2000, 249–271; https://arxiv.org/abs/ solv-int/9804016.Google Scholar
  7. [7]
    I. Krichever and D. H. Phong, “On the integrable geometry of N = 2 supersymmetric gauge theories and soliton equations,” J. Differential Geometry, 45 (1997), 445–485; https://arxiv.org/abs/hep-th/9604199.zbMATHGoogle Scholar
  8. [8]
    I. Krichever and D. Phong, “Symplectic forms in the theory of solitons,” Survey in Differential Geometry, 4 (1998), 239–313.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    I. Krichever and D. H. Phong, “Spin chain models with spectral curves from M Theory,” Commun. Math. Phys., 213:3) (2000), 539–574.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    I. Krichever and T. Shiota, “Soliton equations and the Riemann–Schottky problem,” in: Advanced Lectures Math., vol. 25, Handbook of Moduli, v. II, International Press, Boston, 2013.Google Scholar
  11. [11]
    S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, and S. Tabachnikov, “Linear difference equations, frieze patterns and combinatorial Gale transform,” Forum Math. Sigma, 2 (2014); https://arxiv.org/abs/1309.3880.Google Scholar
  12. [12]
    V. Ovsienko, R. Schwartz, and S. Tabachnikov, “The pentagram map: A discrete integrable system,” Commun. Math. Phys., 299:2) (2010), 409–446.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Soloviev, “Integrability of the pentagram map,” Duke. Math. J., 162:15) (2013), 2815–2853.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Columbia UniversityNew YorkUSA

Personalised recommendations