Advertisement

Functional Analysis and Its Applications

, Volume 50, Issue 4, pp 308–318 | Cite as

Tangential polynomials and matrix KdV elliptic solitons

  • A. TreibichEmail author
Article

Abstract

Let (X, q) be an elliptic curve marked at the origin. Starting from any cover π: Γ → X of an elliptic curve X marked at d points {π i } of the fiber π −1(q) and satisfying a particular criterion, Krichever constructed a family of d × d matrix KP solitons, that is, matrix solutions, doubly periodic in x, of the KP equation. Moreover, if Γ has a meromorphic function f: Γ → P1 with a double pole at each p i , then these solutions are doubly periodic solutions of the matrix KdV equation U t = 1/4(3UU x + 3U x U + U xxx ). In this article, we restrict ourselves to the case in which there exists a meromorphic function with a unique double pole at each of the d points {p i }; i.e. Γ is hyperelliptic and each pi is a Weierstrass point of Γ. More precisely, our purpose is threefold: (1) present simple polynomial equations defining spectral curves of matrix KP elliptic solitons; (2) construct the corresponding polynomials via the vector Baker–Akhiezer function of X; (3) find arbitrarily high genus spectral curves of matrix KdV elliptic solitons.

Key words

KP equation KdV equation compact Riemann surface vector Baker–Akhiezer function ruled surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovskii, “Elliptic families of solutions of the Kadomtsev–Petviashvili equation, and the field elliptic Calogero–Moser system,” Funkts. Anal. Prilozhen., 36:(4) (2002), 1–17; English transl.: Functional Anal. Appl., 36:4 (2002), 253–266.MathSciNetCrossRefGoogle Scholar
  2. [2]
    I. M. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin generalization of the Calogero–Moser system and the Matrix KP equation,” in: Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, vol. 170, Amer. Math. Soc., Providence, RI, 1995, 83–119.CrossRefGoogle Scholar
  3. [3]
    E. D. Belokolos and V. Z. Enolskii, “Reduction of Abelian functions and algebraically integrable systems. II,” J. Math. Sci., 108:(3) (2002), 295–374.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    I. M. Krichever, “Integration of non-linear equations by the method of algebraic geometry,” Funkts. Anal. Prilozhen., 11:(1) (1977), 15–31; English transl.: Functional Anal. Appl., 11:1 (1977), 12–26.MathSciNetzbMATHGoogle Scholar
  5. [5]
    I. M. Krichever, “Elliptic solutions of the KP equation and integrable systems of particles,” Funkts. Anal. Prilozhen., 14:(4) (1980), 45–54; English transl.: Functional Anal. Appl., 14:4 (1980), 282–290.MathSciNetzbMATHGoogle Scholar
  6. [6]
    A. O. Smirnov, Elliptic Solitons of Integrable Non-Linear Equations[in Russian], Dissertation, St. Petersburg, 2000.Google Scholar
  7. [7]
    A. Treibich, “Tangential polynomials and elliptic solitons,” Duke Math. J., 59:(3) (1989), 611–627.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Treibich, “Matrix elliptic solitons,” Duke Math. J., 90:(3) (1997), 523–547.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Treibich and J. L. Verdier, with an appendix by J. OEsterlé, “Solitons Elliptiques,” in: The Grothendieck Festschrift, III, Progr. in Math., vol. 88, Birkhaüser, Boston, 1990, 437–480.CrossRefGoogle Scholar
  10. [10]
    A. Treibich and J. L. Verdier, “Variétés de Kritchever des solitons elliptiques,” in: Proc. of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan book Agency, Delhi, 187–232.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Université d’ArtoisArrasFrance
  2. 2.Universidad de la República, RNMontevideoUruguay

Personalised recommendations